首页> 外文期刊>The Journal of Physiology >Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves.
【24h】

Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves.

机译:血管内压力通过诱导电压不敏感的Ca2 +波来增强脑动脉收缩。

获取原文
获取原文并翻译 | 示例
           

摘要

This study examined whether elevated intravascular pressure stimulates asynchronous Ca(2+) waves in cerebral arterial smooth muscle cells and if their generation contributes to myogenic tone development. The endothelium was removed from rat cerebral arteries, which were then mounted in an arteriograph, pressurized (20-100 mmHg) and examined under a variety of experimental conditions. Diameter and membrane potential (V(M)) were monitored using conventional techniques; Ca(2+) wave generation and myosin light chain (MLC(20))/MYPT1 (myosin phosphatase targeting subunit) phosphorylation were assessed by confocal microscopy and Western blot analysis, respectively. Elevating intravascular pressure increased the proportion of smooth muscle cells firing asynchronous Ca(2+) waves as well as event frequency. Ca(2+) wave augmentation occurred primarily at lower intravascular pressures (<60 mmHg) and ryanodine, a plant alkaloid that depletes the sarcoplasmic reticulum (SR) of Ca(2+), eliminated these events. Ca(2+) wave generation was voltage insensitive as Ca(2+) channel blockade and perturbations in extracellular [K(+)] had little effect on measured parameters. Ryanodine-induced inhibition of Ca(2+) waves attenuated myogenic tone and MLC(20) phosphorylation without altering arterial V(M). Thapsigargin, an SR Ca(2+)-ATPase inhibitor also attenuated Ca(2+) waves, pressure-induced constriction and MLC(20) phosphorylation. The SR-driven component of the myogenic response was proportionally greater at lower intravascular pressures and subsequent MYPT1 phosphorylation measures revealed that SR Ca(2+) waves facilitated pressure-induced MLC(20) phosphorylation through mechanisms that include myosin light chain phosphatase inhibition. Cumulatively, our findings show that mechanical stimuli augment Ca(2+) wave generation in arterial smooth muscle and that these transient events facilitate tone development particularly at lower intravascular pressures by providing a proportion of the Ca(2+) required to directly control MLC(20) phosphorylation.
机译:这项研究检查了升高的血管内压力是否会刺激大脑动脉平滑肌细胞中的异步Ca(2+)波,以及它们的产生是否有助于肌源性音调的发展。从大鼠脑动脉中取出内皮,然后将其安装在动脉造影器中,加压(20-100 mmHg),并在各种实验条件下进行检查。使用常规技术监测直径和膜电位(V(M)); Ca(2+)波浪生成和肌球蛋白轻链(MLC(20))/ MYPT1(肌球蛋白磷酸酶靶向亚基)磷酸化分别通过共聚焦显微镜和Western blot分析进行评估。升高的血管内压力增加了激发异步Ca(2+)波以及事件发生频率的平滑肌细胞的比例。 Ca(2+)波增强主要发生在较低的血管内压力(<60 mmHg)和ryanodine,一种耗尽Ca(2+)的肌质网(SR)的植物生物碱,消除了这些事件。 Ca(2+)波的生成是电压不敏感的,因为Ca(2+)通道受阻,细胞外[K(+)]中的扰动对测量的参数影响很小。 Ryanodine诱导的Ca(2+)波抑制减弱肌原性音调和MLC(20)磷酸化而不会改变动脉V(M)。 Thapsigargin,SR Ca(2 +)-ATPase抑制剂也减弱了Ca(2+)波,压力诱导的收缩和MLC(20)磷酸化。在较低的血管内压力下,成肌反应的SR驱动成分成比例地更大,随后的MYPT1磷酸化措施显示SR Ca(2+)波通过包括肌球蛋白轻链磷酸酶抑制在内的机制促进了压力诱导的MLC(20)磷酸化。累积地,我们的发现表明机械刺激会增加动脉平滑肌中的Ca(2+)波生成,并且这些瞬态事件通过提供直接控制MLC( 20)磷酸化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号