...
首页> 外文期刊>The Journal of Physiology >Voltage-dependent clamp of intracellular pH of identified leech glial cells.
【24h】

Voltage-dependent clamp of intracellular pH of identified leech glial cells.

机译:识别的水identified神经胶质细胞的细胞内pH电压依赖性钳位。

获取原文
获取原文并翻译 | 示例
           

摘要

1. The intracellular pH (pHi) was measured in voltage-clamped, giant neuropile glial cells in isolated segmental ganglia of the leech Hirudo medicinalis, using double-barrelled, pH-sensitive microelectrodes and a slow, two-electrode voltage-clamp system. The potential sensitivity of the pHi regulation in these glial cells was found to be due to an electrogenic Na(+)-HCO3- cotransporter (Deitmer & Szatkowski, 1990). 2. In the presence of 5% CO2 and 24 mM HCO3- (pH 7.4), pHi shifted by 1 pH unit per 110 mV, corresponding to a stoichiometry of 2HCO3-: 1 Na+ of the cotransporter, while in Hepes-buffered CO2-HCO3(-)-free saline (pH 7.4), pHi changed by 1 pH unit per 274 mV. The potential sensitivity of pHi decreased at lower pHo, being 1 pH unit per 216 mV at external pH (pHo) 7.0. 3. Changing pHo between 7.8 and 6.6 induced pHi shifts with a slope of 0.72 pHi units per pHo unit in non-clamped, and of 0.80 pHi units per pHo unit in voltage-clamped cells, indicating that pHi largely followed pHo. The electrochemical gradient of H(+)-HCO3- across the glial membrane was around 56 mV, and remained almost constant over this pHo range. 4. The membrane potential-dependent and pHo-sensitive shifts of pHi were unaffected by amiloride, an inhibitor of Na(+)-H+ exchange. 5. The intracellular acidification upon lowering pHo could be reversed by depolarizing the membrane as predicted from a cotransporter, whose equilibrium follows the membrane potential by resetting pHi. 6. The results indicate that the pHi of leech glial cells is dominated by the electrogenic Na(+)-HCO3- cotransporter, and is hence a function of the membrane potential, and the Na+ and H(+)-HCO3- gradients, across the cell membrane.
机译:1.使用双管,pH敏感的微电极和慢速两电极电压钳系统,在水echHirudo medicinalis的分离节段神经节中的电压钳紧的巨大神经桩神经胶质细胞中测量细胞内pH(pHi)。发现这些胶质细胞中pHi调节的潜在敏感性是由于电生成的Na(+)-HCO3-协同转运蛋白引起的(Deitmer&Szatkowski,1990)。 2.在存在5%CO2和24 mM HCO3-(pH 7.4)的情况下,每110 mV pHi偏移1个pH单位,相当于化学计量为2HCO3-:1 Na +的共转运蛋白,而在Hepes缓冲的CO2-中不含HCO3(-)的盐水(pH 7.4),pHi每274 mV以1个pH单位变化。 pHi的潜在灵敏度在较低的pHo处降低,在外部pH(pHo)7.0时为216 mV 1 pH单位。 3.在7.8至6.6诱导的pHi之间改变pHo,在非钳位的pHi单元中,每pHo单位为0.72 pHi单位,在电压钳制的细胞中,pHo为0.80 pHi单位,这表明pHi很大程度上遵循pHo。 H(+)-HCO3-穿过神经胶质膜的电化学梯度约为56 mV,在此pHo范围内几乎保持恒定。 4. pHi的膜电势依赖性和pHo敏感变化不受Na(+)-H +交换抑制剂amiloride的影响。 5.降低pHo时的细胞内酸化作用可以通过从共转运蛋白预测的膜去极化来逆转,该转运蛋白的平衡通过重置pHi跟随膜电位。 6.结果表明,水ech神经胶质细胞的pHi受电化Na(+)-HCO3-协同转运蛋白的控制,因此是膜电位以及Na +和H(+)-HCO3-梯度的函数。细胞膜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号