首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Electrochemical origin of hysteresis in the electron-transfer reactions of adsorbed proteins:contrasting behavior of the 'Blue'copper protein,azurin,adsorbed on pyrolytic graphite and modified gold electrodes
【24h】

Electrochemical origin of hysteresis in the electron-transfer reactions of adsorbed proteins:contrasting behavior of the 'Blue'copper protein,azurin,adsorbed on pyrolytic graphite and modified gold electrodes

机译:吸附蛋白的电子转移反应中的迟滞的电化学起源:“蓝”铜蛋白,天青素,吸附在热解石墨和修饰金电极上的对比行为

获取原文
获取原文并翻译 | 示例
           

摘要

Azurin and other small redox proteins exhibit fast electron transfer when adsorbed on a pyrolytic graphite “edge” electrode, but close examination reveals unusual electrochemical behavior that is not predicted by simple models. Cyclic voltammetry over a wide range of scan rates (up to 1000 V s1) shows that the apparent reduction potential depends on the scan rate and initial polarization potential, and that a small finite peak separation persists in the slowest experiments (I mV s~(-1)). To determine the origin of these effects, the voltammetric behavior of azurin adsorbed at PGE has been compared with results obtained using gold electrodes modified with a self-assembled monolayer (SAM) of hexanethiol or decanethiol. The contrastingly simple results that are obtained with the SAM electrodes show that the complexities stem from properties of the graphite surface or its interface with the protein. Fast scan cyclic voltammetry, initiated after prepolarizing the graphite electrode over a range of potentials, reveals that rapid electron exchange with the “blue” Cu center is perturbed by further processes that are relatively slow. Moreover, similar effects are observed for a ferredoxin that has two Fe-S clusters, each with a much more negative reduction potential. These slow processes are responsible for the complex hysteresis behavior that is observed with the PGE electrode. Two models are proposed and compared: in the first, redox-active surface groups on the graphite surface modulate the reduction potential of the adsorbed protein. In the second model, the change in redox state of the active site is sensed by the electrode-protein interface, which adjusts to a new state.
机译:当吸附在热解石墨“边缘”电极上时,Azurin和其他小的氧化还原蛋白表现出快速的电子转移,但仔细检查发现其异常的电化学行为无法通过简单的模型预测。在较宽的扫描速率范围内(高达1000 V s1),循环伏安法表明表观还原电位取决于扫描速率和初始极化电位,并且在最慢的实验中仍会出现小的有限峰分离(I mV s〜( -1))。为了确定这些作用的起因,已将吸附在PGE上的天青蛋白的伏安行为与使用由己硫醇或癸硫醇的自组装单层(SAM)修饰的金电极获得的结果进行了比较。用SAM电极获得的相反的简单结果表明,复杂性源于石墨表面或其与蛋白质的界面的性质。在一定电位范围内对石墨电极进行预极化后启动的快速扫描循环伏安法显示,与“蓝色” Cu中心的快速电子交换受到相对较慢的其他过程的干扰。此外,对于具有两个Fe-S簇的铁氧还蛋白也观察到了类似的效果,每个簇都具有更大的负还原电位。这些缓慢的过程是造成PGE电极观察到的复杂磁滞行为的原因。提出并比较了两个模型:首先,石墨表面上的氧化还原活性表面基团调节吸附蛋白的还原电位。在第二个模型中,通过调整为新状态的电极-蛋白质界面感应到活性位点的氧化还原状态的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号