...
【24h】

Neural correlates of reach errors.

机译:到达误差的神经相关性。

获取原文
获取原文并翻译 | 示例
           

摘要

Reach errors may be broadly classified into errors arising from unpredictable changes in target location, called target errors, and errors arising from miscalibration of internal models (e.g., when prisms alter visual feedback or a force field alters limb dynamics), called execution errors. Execution errors may be caused by miscalibration of dynamics (e.g., when a force field alters limb dynamics) or by miscalibration of kinematics (e.g., when prisms alter visual feedback). Although all types of errors lead to similar on-line corrections, we found that the motor system showed strong trial-by-trial adaptation in response to random execution errors but not in response to random target errors. We used functional magnetic resonance imaging and a compatible robot to study brain regions involved in processing each kind of error. Both kinematic and dynamic execution errors activated regions along the central and the postcentral sulci and in lobules V, VI, and VIII of the cerebellum, making these areas possible sites of plastic changes in internal models for reaching. Only activity related to kinematic errors extended into parietal area 5. These results are inconsistent with the idea that kinematics and dynamics of reaching are computed in separate neural entities. In contrast, only target errors caused increased activity in the striatum and the posterior superior parietal lobule. The cerebellum and motor cortex were as strongly activated as with execution errors. These findings indicate a neural and behavioral dissociation between errors that lead to switching of behavioral goals and errors that lead to adaptation of internal models of limb dynamics and kinematics.
机译:到达误差可大致归类为目标位置不可预测的变化引起的误差(称为目标误差)以及内部模型校准不正确引起的误差(例如,当棱镜改变视觉反馈或力场改变肢体动力学时),称为执行误差。执行错误可能是由于动力学的错误校准(例如,当力场改变肢体动力学时)或运动学的错误校准(例如,当棱镜改变了视觉反馈时)引起的。尽管所有类型的错误都会导致类似的在线更正,但我们发现,电动机系统在响应随机执行错误而不是响应随机目标错误时,显示出强大的逐项试验适应性。我们使用了功能磁共振成像和兼容的机器人来研究涉及处理各种错误的大脑区域。运动和动态执行错误均会激活沿中央和中央后沟以及小脑V,VI和VIII小叶的区域,使这些区域可能成为内部模型可塑性变化的部位。只有与运动学错误相关的活动才扩展到顶叶区域5。这些结果与以下观点不一致:在单独的神经实体中计算运动学和到达动力学。相反,只有靶标错误导致纹状体和顶叶后叶活动增加。小脑和运动皮层像执行错误一样被强烈激活。这些发现表明,导致行为目标切换的错误与导致肢体动力学和运动学内部模型适应的错误之间存在神经和行为分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号