...
首页> 外文期刊>The Journal of Membrane Biology: An International Journal for Studies on the Structure, Function & Genesis of Biomembranes >The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media.
【24h】

The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media.

机译:电变形力对低电导率和高电导率介质中红细胞膜的电透性的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Electrical breakdown of erythrocytes induces hemoglobin release which increases markedly with decreasing conductivity of the pulse medium. This effect presumably results from the transient, conductivity-dependent deformation forces (elongation or compression) on the cell caused by Maxwell stress. The deformation force is exerted on the plasma membrane of the cell, which can be viewed as a transient dipole induced by an applied DC electric field pulse. The induced dipole arises from the free charges that accumulate at the cell interfaces via the Maxwell-Wagner polarization mechanism. The polarization response of erythrocytes to a DC field pulse was estimated from the experimental data obtained by using two complementary frequency-domain techniques. The response is very rapid, due to the highly conductive cytosol. Measurements of the electrorotation and electrodeformation spectra over a wide conductivity range yielded the information and data required for the calculation of the deformation force as a function of frequency and external conductivity and for the calculation of the transient development of the deformation forces during the application of a DC-field pulse. These calculations showed that (i) electric force precedes and accompanies membrane charging (up to the breakdown voltage) and (ii) that under low-conductivity conditions, the electric stretching force contributes significantly to the enlargement of "electroleaks" in the plasma membrane generated by electric breakdown.
机译:红细胞的电击穿引起血红蛋白释放,其随着脉冲介质电导率的降低而显着增加。据推测,这种影响是由于麦克斯韦应力在电池上产生的,与电导率有关的瞬态变形力(伸长或压缩)所致。变形力施加在细胞的质膜上,可以将其视为由施加的直流电场脉冲引起的瞬态偶极子。感应的偶极子来自通过麦克斯韦-瓦格纳极化机制在细胞界面积累的自由电荷。从使用两种互补频域技术获得的实验数据估计红细胞对DC场脉冲的极化响应。由于具有高传导性的胞质溶胶,反应非常迅速。在很宽的电导率范围内对电旋转和电形成光谱的测量得出了信息和数据,这些信息和数据是计算变形力与频率和外部电导率的函数所需要的,以及计算在施加电导率期间变形力的瞬态发展所需要的信息和数据。直流磁场脉冲。这些计算表明,(i)在膜充电之前和伴随着电力(直至击穿电压),并且(ii)在低电导率条件下,电拉伸力极大地促进了所产生质膜中“电渗漏”的扩大通过电击穿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号