...
首页> 外文期刊>The Journal of Chemical Physics >INTERFACIAL TENSION OF PHASE-SEPARATED POLYMER SOLUTIONS AND RELATION TO THEIR EQUATION OF STATE
【24h】

INTERFACIAL TENSION OF PHASE-SEPARATED POLYMER SOLUTIONS AND RELATION TO THEIR EQUATION OF STATE

机译:相分离聚合物溶液的界面张力及其与状态方程的关系

获取原文
获取原文并翻译 | 示例
           

摘要

Using an effective (coarse-grained) thermodynamic potential describing the excess free energy of mixing of a polymer solution and fitting its parameters to measured critical point data, we obtain the ''hump'' epsilon(tau) of this potential in the two-phase region (tau being the reduced distance from the critical temperature T of unmixing). For 30 different systems (varying the degree of polymerization r as well as choosing different polymer-solvent pairs) it is shown that the data are reasonably well represented by a power law, epsilon(tau)=epsilon(tau)tau(zeta). While mean field theory implies zeta=5/2 and scaling theory zeta=3 nu+beta approximate to 2.22 (using Ising model exponents nu approximate to 0.63,beta approximate to 0.325), the ''effective'' exponent extracted from the data mostly falls in between these limits (zeta(eff)approximate to 2.4). since the interfacial tension satisfies a similar power law, sigma(tau)=sigma,tau tau(mu) (with mu=3/2 in mean field theory or mu=2 nu approximate to 1.26 in scaling theory), we also consider a relation between interfacial tension and free energy hump, sigma(epsilon)=sigma(epsilon)epsilon(phi). While mean-field theory implies phi=3/5 and scaling theory phi=2(3+betau)approximate to 0.57, the empirical exponent lies in the range 0.5 less than or similar to phi(eff)less than or similar to 0.6. we present estimates of molecular weight dependencies of critical amplitude prefactors epsilon(tau)sigma(tau)sigma(epsilon) and of related quantities for many different systems. We also discuss whether the critical amplitude combination (epsilon(tau)/B-tau)(2/3)/sigma, where B-tau describes the coexistence curve {phi(coex)((2))-phi(coex)((1))=(
机译:使用有效的(粗粒度的)热力学势来描述混合聚合物溶液的多余自由能,并将其参数与测得的临界点数据进行拟合,我们可以在两步中获得该势的“驼峰”ε(tau)相区域(tau是离混合临界温度T的减小距离)。对于30种不同的系统(改变聚合度r并选择不同的聚合物-溶剂对),可以证明,幂定律ετ=εtau zeta可以很好地表示数据。虽然平均场论暗示zeta = 5/2,缩放理论zeta = 3 nu + beta近似为2.22(使用Ising模型指数nu近似为0.63,beta近似为0.325),但“有效”指数主要是从数据中提取的介于这些限制之间(zeta(eff)约等于2.4)。由于界面张力满足相似的幂定律,即sigma(tau)= sigma,tau tau(mu)(在平均场理论中,mu = 3/2或在缩放理论中,mu = 2 nu近似于1.26),因此我们还考虑了界面张力与自由能峰之间的关系,σ(ε)=σ(ε)。虽然平均场理论暗示phi = 3/5,缩放理论phi = 2(3 + beta / nu)近似为0.57,但经验指数在phi(eff)小于或类似于phi(eff)小于或相似于0.5的范围内0.6。我们提出了对临界振幅前因子epsilon(tau)sigma(tau)sigma(epsilon)的分子量依赖性以及许多不同系统的相关量的估计。我们还讨论了临界振幅组合(epsilon(tau)/ B-tau)(2/3)/ sigma,其中B-tau描述了共存曲线{phi(coex)(((2))-phi(coex)( (1))=(

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号