首页> 外文期刊>The Journal of Chemical Physics >Adsorption and desorption dynamics of H-2 and D-2 on Cu(111): The role of surface temperature and evidence for corrugation of the dissociation barrier
【24h】

Adsorption and desorption dynamics of H-2 and D-2 on Cu(111): The role of surface temperature and evidence for corrugation of the dissociation barrier

机译:H-2和D-2在Cu(111)上的吸附和解吸动力学:表面温度的作用和解离障碍起皱的证据

获取原文
获取原文并翻译 | 示例
           

摘要

We report the effect of surface temperature on the state resolved translational energy distributions for H-2 and D-2 recombinatively desorbed from Cu(111). Sticking functions S(upsilon,J,E) can be obtained by applying detailed balance arguments and follow the familiar error function form at high energy, consistent with previous permeation measurements [Rettner et al., J. Chem. Phys. 102, 4625 (1995)]. The widths of the sticking functions are identical for both isotopes and are independent of rotational state. S(E) broadens rapidly with increasing surface temperature, with a low energy component which is slightly larger than represented by an error function form. This is similar to the behavior seen on Ag(111) [Murphy et al., Phys. Rev. Lett. 78, 4458 (1997)] but on Cu(111) the low energy component remains a minor desorption channel. The broadening of S(E) can be explained in terms of a change in the distribution of barriers caused by local thermal displacement of the surface atoms, thermal activation of the surface producing sites where molecules can dissociate, or desorb, with a reduced translational activation barrier. At low energy sticking increases rapidly with surface temperature, with an activation energy of 0.54 and 0.60 eV for H-2 and D-2, respectively. These values are similar to the thermal activation energies calculated for translational excitation of H-2/D-2 and imply that thermal excitation of the surface is just as efficient as translational energy in promoting dissociation. The influence of surface temperature decreases with increasing translational energy as molecules become able to dissociate even on the static Cu(111) surface. By comparing the energy distributions for desorption with existing angular distributions we determine how the effective energy, E-e = E cos(n(E)) theta which contributes to adsorption-desorption, scales with translational energy. At translational energies near the threshold for sticking n(E) approximate to 2, sticking scales with the normal component of the translational energy and is not influenced by motion parallel to the surface. At lower energy n(E) drops towards zero, indicating that motion parallel to the surface aids dissociation, consistent with dissociation at a corrugated barrier. (C) 1998 American Institute of Physics. [References: 38]
机译:我们报告了表面温度对H-2和D-2从Cu(111)上复合解吸的状态解析的平移能量分布的影响。粘滞函数S(upsilon,J,E)可以通过应用详细的平衡参数来获得,并遵循熟悉的误差函数形式,处于高能量状态,这与以前的渗透率测量结果一致[Rettner et al。,J. Chem。物理102,4625(1995)]。两种同位素的粘附函数宽度相同,并且与旋转状态无关。 S(E)随着表面温度的升高而迅速变宽,其低能量成分略大于误差函数形式所表示的能量。这类似于在Ag(111)上看到的行为[Murphy等,Phys。牧师78,4458(1997)],但在Cu(111)上,低能组分仍然是次要的解吸通道。 S(E)的展宽可以用表面原子的局部热位移引起的势垒分布变化,表面产生位点的热活化作用(分子可以通过降低的翻译活化作用解离或解吸)来解释屏障。在低能状态下,黏附力随表面温度迅速增加,H-2和D-2的活化能分别为0.54和0.60 eV。这些值类似于为H-2 / D-2的平移激发计算的热活化能,并暗示表面的热激发与平移能在促进离解方面同样有效。表面温度的影响随着平移能量的增加而降低,因为分子甚至可以在静态Cu(111)表面上解离。通过将解吸的能量分布与现有的角分布进行比较,我们可以确定有效能量E-e = E cos(n(E))theta与平移能成比例,该角有助于吸附-解吸。在平移能量接近于粘附阈值n(E)约2时,粘附比例与平移能量的法向分量成正比,并且不受平行于表面的运动的影响。在较低的能量下,n(E)下降至零,表明平行于表面的运动有助于离解,这与在波纹障碍处的离解一致。 (C)1998美国物理研究所。 [参考:38]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号