...
首页> 外文期刊>Quarterly Journal of the Royal Meteorological Society >Implementation of an aerosol-cloud-microphysics-radiation coupling into the NASA unified WRF: Simulation results for the 6-7 August 2006 AMMA special observing period
【24h】

Implementation of an aerosol-cloud-microphysics-radiation coupling into the NASA unified WRF: Simulation results for the 6-7 August 2006 AMMA special observing period

机译:气溶胶-云-微物理学-辐射耦合到NASA统一WRF中的实现:2006年8月6日至7日AMMA特殊观测期的模拟结果

获取原文
获取原文并翻译 | 示例
           

摘要

Aerosols affect the Earth’s radiation balance directly and cloud microphysical processes indirectly via the activation of cloud condensation and ice nuclei. These two effects have often been considered separately and independently, hence the need toassess their combined impact given the differing nature of their effects on convective clouds. To study both effects, an aerosol-microphysics-radiation coupling, including Goddard microphysics and radiation schemes, was implemented into the NASA UnifiedWeather Research and Forecasting model (NU-WRF). Fully coupled NU-WRF simulations were conducted for a mesoscale convective system (MCS) that passed through the Niamey, Niger area on 6-7 August 2006 during an AMMA special observing period. The results suggest that rainfall is reduced when aerosol indirect effects are included, regardless of the aerosol direct effect. Daily mean radiation heating profiles in the area traversed by the MCS showed the aerosol (mainly mineral dust) direct effect had the largest impact near cloud tops just above 200 hPa where short-wave heating increased by about 0.8 K day“'; the weakest long-wave cooling was at around 250 hPa. It was also found that more condensation and ice nuclei as a result of higher aerosol/dust concentrations led to increased amounts of all cloudjiydrometeors because of the microphysical indirect effect, and the radiation direct effecjcts to reduce precipitating cloud particles (rain, snow and graupel) in the middle andTto cloud feyers while increasing the non-precipitating particles (ice) in the cirrus anviL However, when the aerosol direct effect was activated, regardless of the indirect effect; the onset of MCS precipitation was delayed about 2 h, in conjunction with the delay in the activation of cloud condensation and ice nuclei. Overall, for this particular environment, model set-up and physics configuration, the effect of aerosol radiative heating due to mineral dust overwhelmed the effect of the aerosols on microphysics.
机译:气溶胶通过激活云凝结和冰核而直接影响地球的辐射平衡,并间接影响云的微物理过程。通常会分别和独立地考虑这两种影响,因此鉴于它们对对流云的影响性质不同,需要评估它们的综合影响。为了研究这两种效应,已将包括戈达德微物理学和辐射计划在内的气溶胶-微物理学-辐射耦合应用于NASA统一天气研究和预报模型(NU-WRF)。对中尺度对流系统(MCS)进行了完全耦合的NU-WRF模拟,该对流系统于2006年8月6日至7日在AMMA特殊观测期间通过了尼日尔的尼亚美地区。结果表明,包括气溶胶间接作用在内的降雨减少,而与气溶胶直接作用无关。 MCS穿越区域的日平均辐射加热剖面表明,气溶胶(主要是矿物粉尘)的直接影响在200 hPa以上的云顶附近影响最大,短波加热增加了约0.8 K天。长波冷却最弱的时间约为250 hPa。还发现由于较高的气溶胶/粉尘浓度而导致的更多凝结和冰核,由于微物理间接效应以及辐射直接效应以减少沉淀的云颗粒(雨,雪和雨滴)而导致所有云层的数量增加。在中部和Tto云中,它们增加了卷云中的非沉淀颗粒(冰)。但是,当激活气溶胶的直接作用时,无论间接作用是什么; MCS沉淀的发生被延迟了大约2小时,同时云凝结和冰核的激活也被延迟了。总体而言,对于这种特殊的环境,模型设置和物理配置,矿物粉尘引起的气溶胶辐射加热的影响压倒了气溶胶对微观物理的影响。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号