...
首页> 外文期刊>Progress in Particle and Nuclear Physics >What are the astrophysical sites for the r-process and the production of heavy elements?
【24h】

What are the astrophysical sites for the r-process and the production of heavy elements?

机译:r过程和重元素产生的天体物理位置是什么?

获取原文
获取原文并翻译 | 示例
           

摘要

This article addresses three of the four nucleosynthesis processes involved in producing heavy nuclei beyond Fe (with a main focus on the r-process). Opposite to the fourth process (the s-process), which operates in stellar evolution during He- and C-burning, they are all related to explosive burning phases, (presumably) linked to core collapse supernova events of massive stars. The (classical) p-process is identified with explosive Ne/O-burning in outer zones of the progenitor star. It is initiated by the passage of the supernova shock wave and acts via photodisintegration reactions like a spallation process which produces neighboring (proton-rich) isotopes from pre-existing heavy nuclei. The reproduction of some of the so-called lighter p-isotopes with A<100 faces problems in this environment. The only recently discovered νp-process is related to the innermost ejecta, the neutrino wind expelled from the hot proto-neutron star after core collapse and the supernova explosion. This neutrino wind is proton-rich in its early phase, producing nuclei up to ~(64)Ge. Reactions with neutrinos permit to overcome decay/reaction bottlenecks for the flow beyond ~(64)Ge, thus producing light p-isotopes, which face problems in the classical p-process scenario. The understanding of the r-process, being identified for a long time with rapid neutron captures and passing through nuclei far from stability, is still experiencing major problems. These are on the one hand related to nuclear uncertainties far from stability (masses, half-lives, fission barriers), affecting the process speed and abundance peaks. On the other hand the site is still not definitely located, yet. (i) Later, possibly neutron-rich, high entropy phases of the neutrino wind (if they materialize!) could permit its operation. (ii) Other options include the ejection of very neutron-rich neutron star-like matter, occurring possibly in neutron star mergers or core collapse supernova events with jets, related to prior stellar evolution with high rotation rates and magnetic fields. Two different environments are required for a weak and a main/strong r-process, witnessed by observations of low metallicity stars and meteoritic inclusions, which could possibly be identified with the two options listed above, i.e. the weak r-process could be related to the neutrino wind when changing from p-rich to n-rich conditions.
机译:本文介绍了在铁以外产生重核的四个核合成过程中的三个(主要集中在r过程上)。与第四过程(s过程)相反,后者在He和C燃烧过程中处于恒星演化过程,它们都与爆炸性燃烧阶段有关,(大概)与大质量恒星的核心坍缩超新星事件有关。 (经典的)p-过程被认为是在前恒星外部区域发生爆炸性的Ne / O燃烧。它是由超新星冲击波的通过引发的,并通过光解反应起作用,例如散裂过程,该过程从预先存在的重核中产生相邻的(富含质子的)同位素。在这种环境下,某些A <100的较轻p同位素的复制面临着问题。最近发现的唯一vp过程与最里面的喷射有关,这是在核心坍塌和超新星爆炸后从热的原中子星排出的中微子风。这种中微子风在其早期富含质子,可产生高达〜(64)Ge的核。与中微子的反应可以克服〜(64)Ge以外的流体的衰变/反应瓶颈,从而产生轻质的p同位素,这在经典的p过程方案中面临问题。长期以来,对中子快速捕获的认识以及对穿过不稳定核的r过程的理解仍然面临着重大问题。这些一方面与核不确定性有关,而核不确定性远非稳定(质量,半衰期,裂变壁垒),会影响过程速度和丰度峰值。另一方面,该站点仍不确定。 (i)以后,中微子风的可能中子富集的高熵相(如果它们实现了!)可以使其运行。 (ii)其他选择包括射出非常富中子的中子星状物质,这可能发生在中子星合并或带有喷射的核心坍缩超新星事件中,这与先前具有高旋转速率和磁场的恒星演化有关。弱和主要/强r过程需要两个不同的环境,这是通过观察到的低金属度恒星和陨石夹杂物来证明的,这可以通过上面列出的两个选项来识别,即弱r过程可能与从富含p的状态变为富含n的状态时的中微子风。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号