首页> 外文期刊>Biomechanics and modeling in mechanobiology >Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation
【24h】

Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation

机译:早期壁重塑后响应远端主动脉缩窄的胸,冠状动脉和脑动脉内血流动力学变化的计算模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Mounting evidence suggests that the pulsatile character of blood pressure and flow within large arteries plays a particularly important role as a mechano-biological stimulus for wall growth and remodeling. Nevertheless, understanding better the highly coupled interactions between evolving wall geometry, structure, and properties and the hemodynamics will require significantly more experimental data. Computational fluid-solid-growth models promise to aid in the design and interpretation of such experiments and to identify candidate mechanobiological mechanisms for the observed arterial adaptations. Motivated by recent aortic coarctation models in animals, we used a computational fluid-solid interaction model to study possible local and systemic effects on the hemodynamics within the thoracic aorta and coronary, carotid, and cerebral arteries due to a distal aortic coarctation and subsequent spatial variations in wall adaptation. In particular, we studied an initial stage of acute cardiac compensation (i.e., maintenance of cardiac output) followed by early arterial wall remodeling (i.e., spatially varying wall thickening and stiffening). Results suggested, for example, that while coarctation increased both the mean and pulse pressure in the proximal vessels, the locations nearest to the coarctation experienced the greatest changes in pulse pressure. In addition, after introducing a spatially varying wall adaptation, pressure, left ventricular work, and wave speed all increased. Finally, vessel wall strain similarly experienced spatial variations consistent with the degree of vascular wall adaptation.
机译:越来越多的证据表明,大动脉内血压和血流的搏动特性作为壁壁生长和重塑的机械生物刺激起着特别重要的作用。然而,要更好地了解不断变化的壁的几何形状,结构和特性与血液动力学之间的高度耦合相互作用,将需要更多的实验数据。计算流体-固体-生长模型有望帮助此类实验的设计和解释,并确定观察到的动脉适应性的候选力学生物学机制。受近期动物主动脉缩窄模型的推动,我们使用计算流体-固体相互作用模型研究由于远端主动脉缩窄和随后的空间变化而对胸主动脉以及冠状动脉,颈动脉和脑动脉内血流动力学的可能局部和全身性影响在墙壁适应。特别是,我们研究了急性心脏补偿的初始阶段(即维持心输出量),然后进行了早期动脉壁重塑(即,空间变化的壁增厚和变硬)。结果表明,例如,虽然缩窄同时增加了近端血管的平均压力和脉压,但最接近缩窄的位置的脉压变化最大。另外,在引入空间变化的壁适应之后,压力,左心室功和波速都增加。最后,血管壁应变同样经历了与血管壁适应程度一致的空间变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号