首页> 外文期刊>Biomechanics and modeling in mechanobiology >The effect of tissue-engineered cartilage biomechanical and biochemical properties on its post-implantation mechanical behavior
【24h】

The effect of tissue-engineered cartilage biomechanical and biochemical properties on its post-implantation mechanical behavior

机译:组织工程软骨的生物力学和生化特性对其植入后力学行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The insufficient load-bearing capacity of today's tissue-engineered (TE) cartilage limits its clinical application. Focus has been on engineering cartilage with enhanced mechanical stiffness by reproducing native biochemical compositions. More recently, depth dependency of the biochemical content and the collagen network architecture has gained interest. However, it is unknown whether the mechanical performance of TE cartilage would benefit more from higher content of biochemical compositions or from achieving an appropriate collagen organization. Furthermore, the relative synthesis rate of collagen and proteoglycans during the TE process may affect implant performance. Such insights would assist tissue engineers to focus on those aspects that are most important. The aim of the present study is therefore to elucidate the relative importance of implant ground substance stiffness, collagen content, and collagen architecture of the implant, as well as the synthesis rate of the biochemical constituents for the post-implantation mechanical behavior of the implant. We approach this by computing the post-implantation mechanical conditions using a composition-based fibril-reinforced poro-viscoelastic swelling model of the medial tibia plateau. Results show that adverse implant composition and ultrastructure may lead to post-implantation excessive mechanical loads, with collagen orientation being the most critical variable. In addition, we predict that a faster synthesis rate of proteoglycans compared to that of collagen during TE culture may result in excessive loads on collagen fibers post-implantation. This indicates that even with similar final contents, constructs may behave differently depending on their development. Considering these aspects may help to engineer TE cartilage implants with improved survival rates.
机译:当今的组织工程(TE)软骨承载能力不足,限制了其临床应用。重点一直放在通过复制天然生化成分来增强机械刚度的工程软骨上。最近,生化成分和胶原网络结构对深度的依赖引起了人们的兴趣。但是,尚不清楚TE软骨的机械性能是否会因更高含量的生化组合物或获得合适的胶原蛋白组织而受益。此外,TE过程中胶原蛋白和蛋白聚糖的相对合成速率可能会影响植入物的性能。这些见解将帮助组织工程师专注于最重要的方面。因此,本研究的目的是阐明植入物的地面物质刚度,胶原蛋白含量和植入物的胶原结构的相对重要性,以及植入物的植入后机械行为的生化成分的合成速率。我们通过使用基于胫骨高原的原纤维增强的多孔粘弹性肿胀模型计算植入后的机械条件来解决这个问题。结果表明,不利的植入物成分和超微结构可能导致植入后过度的机械负荷,其中胶原蛋白的取向是最关键的变量。此外,我们预测,与TE培养期间的胶原蛋白相比,蛋白聚糖的合成速度更快,可能会导致植入后胶原纤维的负荷过大。这表明,即使最终内容相似,结构也可能根据其发展而有所不同。考虑这些方面可能有助于设计TE软骨植入物并提高生存率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号