首页> 外文期刊>Chemical Product and Process Modeling >Mathematical Modeling of Natural Gas Separation Using Hollow Fiber Membrane Modules by Application of Finite Element Method through Statistical Analysis
【24h】

Mathematical Modeling of Natural Gas Separation Using Hollow Fiber Membrane Modules by Application of Finite Element Method through Statistical Analysis

机译:应用有限元方法统计分析中空纤维膜组件的天然气分离数学模型

获取原文
获取原文并翻译 | 示例
           

摘要

Hollow fiber membrane permeators used in the separation industry are proven as preferred modules representing various benefits and advantages to gas separation processes. In the present study, a mathematical model is proposed to predict the separation performance of natural gas using hollow fiber membrane modules. The model is used to perform sensitivity analysis to distinguish which process parameters influence the most and are necessary to be assessed appropriately. In this model, SRK equation was used to justify the nonideal behavior of gas mixtures and Joule-Thomson equation was employed to take into account the changes in the temperature due to permeation. Also, the changes in temperature along shell side was calculated via thermodynamic principles. In the proposed mathematical model, the temperature dependence of membrane permeance is justified by the Arrhenius-type equation.. Furthermore, a surface mole fraction parameter is introduced to consider the effect of accumulation of less permeable component adjacent to the membrane surface in the feed side. The model is validated using experimental data. Central Composite Designs are used to gain response surface model. For this, fiber inner diameter, active fiber length, module diameter and number of fibers in the module are taken as the input variables related to the physical geometries. Results show that the number as well as the length of the fibers have the most influence on the membrane performance. The maximum mole fraction of CO2 in the permeate stream is observed for low number of fibers and fibers having smaller active lengths. Also results indicate that at constant active fiber length, increasing the number of fibers decreases the permeate mole fraction of CO2. The findings demonstrate the importance of considering appropriate physical geometries for designing hollow fiber membrane permeators for practical gas separation applications.
机译:分离工业中使用的中空纤维膜渗透器被证明是代表气体分离过程各种优点和优点的优选模块。在本研究中,提出了一个数学模型来预测使用中空纤维膜组件的天然气的分离性能。该模型用于执行灵敏度分析,以区分哪些工艺参数影响最大,并且需要进行适当评估。在该模型中,使用SRK方程来证明混合气体的非理想行为,并使用Joule-Thomson方程来考虑由于渗透引起的温度变化。另外,沿壳侧的温度变化是通过热力学原理计算的。在所提出的数学模型中,通过Arrhenius型方程证明了膜渗透性的温度依赖性。此外,引入了表面摩尔分数参​​数,以考虑进料侧与膜表面相邻的渗透性较低的组分的积累效应。使用实验数据对模型进行验证。中央复合设计用于获取响应曲面模型。为此,将纤维内径,有效纤维长度,组件直径和组件中的纤维数量作为与物理几何形状相关的输入变量。结果表明,纤维的数量和长度对膜性能的影响最大。对于较少数量的纤维和具有较小活性长度的纤维,观察到渗透物流中CO 2的最大摩尔分数。结果还表明,在恒定的活性纤维长度下,增加纤维数量会降低CO2的渗透摩尔分数。这些发现证明了在设计用于实际气体分离应用的中空纤维膜渗透器时,考虑适当的物理几何形状的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号