...
首页> 外文期刊>Plasma physics and controlled fusion >Sheared flows and transition to improved confinement regime in the TJ-II stellarator
【24h】

Sheared flows and transition to improved confinement regime in the TJ-II stellarator

机译:TJ-II恒星机的剪切流和过渡到改进的封闭状态

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Sheared flows have been experimentally studied in TJ-II plasmas. In lowdensity ECH plasmas, sheared flows can be easily controlled by changing the plasma density, thereby allowing the radial origin and evolution of the edge velocity shear layer to be studied. In high density NBI heated plasmas a negative radial electric field is observed that is dominated by the diamagnetic component. The shear of the negative radial electric field increases at the L–H transition by an amount that depends on the magnetic configuration and heating power. Magnetic configurations with and without a low order rational surface close to the plasma edge show differences that may be interpreted in terms of local changes in the radial electric field induced by the rational surface that could facilitate the L–H transition. Fluctuation measurements show a reduction in the turbulence level that is strongest at the position of maximum Er shear. High temporal and spatial resolution measurements indicate that turbulence reduction precedes the increase in the mean sheared flow, but is simultaneous with the increase in the low frequency oscillating sheared flow. These observations may be interpreted in terms of turbulence suppression by oscillating flows, the so-called zonal flows.
机译:已经在TJ-II等离子体中对剪切流进行了实验研究。在低密度ECH等离子体中,可以通过更改等离子体密度轻松控制剪切流,从而可以研究边缘速度剪切层的径向起源和演化。在高密度NBI加热的等离子体中,观察到负的径向电场,该电场主要由反磁性成分控制。负径向电场的切变在L–H跃迁处增加,其变化量取决于磁性结构和加热功率。具有和不具有靠近等离子体边缘的低阶有理表面的磁结构显示出差异,这可以用有理表面引起的径向电场的局部变化来解释,这些变化可以促进L–H跃迁。波动测量结果显示,在最大Er剪切位置处,湍流程度的降低最为明显。较高的时间和空间分辨率测量结果表明,湍流减小先于平均剪切流量的增加,但与低频振荡剪切流量的增加同时发生。这些观察结果可以通过振荡流(所谓的纬向流)的湍流抑制来解释。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号