...
首页> 外文期刊>Chemical Engineering Science >Experimental flowloop investigations of gas hydrate formation in high water cut systems
【24h】

Experimental flowloop investigations of gas hydrate formation in high water cut systems

机译:高含水率系统中天然气水合物形成的实验流环研究

获取原文
获取原文并翻译 | 示例
           

摘要

As oil/gas subsea fields mature, the amount of water produced increases, which results in an increased risk of gas hydrate plug formation in the flowlines. It is important to understand the mechanism of gas hydrate plug formation in high water cut systems in order to manage gas hydrate risk. In this work, we performed an extensive series of gas hydrate formation and dissociation experiments in a 4-inch diameter flowloop at the ExxonMobil research facility at Friendswood, TX. The flowloop was instrumented for pressure, temperature, density, and differential pressure measurements. The effect of mixture velocity (1-2.5m/s) and liquid loading (50-90vol.%) on gas hydrate plug formation was studied for 100vol.% water cut (no oil present) systems, with methane as the gas hydrate former. The pressure drop across the pump due to flow did not substantially increase until a certain concentration of gas hydrates, defined as φ_(transition), formed; this transition, as measured by the rapid increase in pressure drop, can be used as an indication for onset of hydrate plug formation. φ_(transition) was found to be unaffected by liquid loading and the presence of salt (3.5wt.% NaCl) in water, while it increased with increasing mixture velocity. A gas hydrate plugging mechanism for 100vol.% water cut systems is proposed, which involves a transition from homogeneous to heterogeneous suspensions of gas hydrate particles in water. We hypothesize that the large pressure drop observed after φ_(transition) results from the formation of a gas hydrate bed and wall deposit. A correlation between φ_(transition) and the mixture velocity is presented, this correlation allows the prediction of an onset of hydrate plug formation based on the fluids mixture velocity.
机译:随着油气海底油田的成熟,产生的水量增加,这导致在流水线中形成天然气水合物塞的风险增加。重要的是要了解高含水率系统中天然气水合物塞形成的机理,以便管理天然气水合物风险。在这项工作中,我们在德克萨斯州Friendswood的埃克森美孚研究设施的直径为4英寸的流量环中进行了一系列气体水合物的形成和分解实验。流量环用于压力,温度,密度和差压测量。在甲烷为气体水合物前体的100vol。%含水率(无油)系统中,研究了混合速度(1-2.5m / s)和液体载量(50-90vol。%)对天然气水合物塞形成的影响。 。直到形成一定浓度的气体水合物(定义为φ_(过渡))时,由于流量引起的泵两端的压降才真正增加。如通过压降的快速增加所测量的,该转变可以用作开始形成水合物塞的指示。发现φ_(过渡)不受液体负载和水中盐(3.5wt。%NaCl)的存在的影响,而随混合速度的增加而增加。提出了一种用于100vol。%含水率系统的天然气水合物堵塞机理,该机理涉及从天然气水合物颗粒在水中的均质悬浮液到非均相悬浮液的过渡。我们假设φ_(过渡)后观察到的大压降是由天然气水合物床和壁沉积物的形成引起的。给出了φ_(过渡)与混合速度之间的相关性,该相关性允许基于流体的混合速度来预测水合物塞形成的开始。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号