首页> 外文期刊>Physical Review, B. Condensed Matter >FLUX-PINNING MECHANISM OF PROXIMITY-COUPLED PLANAR DEFECTS IN CONVENTIONAL SUPERCONDUCTORS - EVIDENCE THAT MAGNETIC PINNING IS THE DOMINANT PINNING MECHANISM IN NIOBIUM-TITANIUM ALLOY
【24h】

FLUX-PINNING MECHANISM OF PROXIMITY-COUPLED PLANAR DEFECTS IN CONVENTIONAL SUPERCONDUCTORS - EVIDENCE THAT MAGNETIC PINNING IS THE DOMINANT PINNING MECHANISM IN NIOBIUM-TITANIUM ALLOY

机译:常规超导体中邻近耦合平面缺陷的磁通钉扎机理-磁性钉扎是铌钛合金中主要钉扎机理的证据

获取原文
获取原文并翻译 | 示例
           

摘要

We propose that a magnetic pinning mechanism is the dominant flux-pinning mechanism of proximity-coupled, planar defects when the field is parallel to the defect. We find compelling evidence that this pinning mechanism is responsible for the strong flux-pinning force exerted by ribbon-shaped alpha-Ti precipitates and artificial pins in Nb-Ti superconductors, instead of the core pinning mechanism as has been hitherto widely believed. Because the elementary pinning force f(p)(H) is nonmonotonic when it is optimum (i.e., when the defect thickness t and the proximity length xi(N) have comparable dimensions), the total pinning force F-p(H) generally does not show temperature scaling. Characteristic changes in the magnitude and shape of F-p(H) at constant T but at different t/xi(N) (e.g., different Nb-Ti wire diameters) are also direct consequences of the pinning mechanism. The optimum flux-pinning state is a compromise between maximizing f(p) and getting the highest number density of pins. For a given defect composition this state is reached when t similar to xi(N)/3, while for varying defect composition the peak F-p gets higher when xi(N) is made shorter. Artificial pinning center Nb-Ti wires having short xi(N) pins appear to be vital for obtaining high J(c) at high fields because only then is the elementary pinning force optimized at small pin thicknesses which permit a high number density of vortex-pin interactions and a large bulk pinning force. We find verification of our predictions in experimental F-p(H, T,t) data obtained on special laboratory-scale artificial pinning-center Nb-Ti wires. [References: 70]
机译:我们提出,当磁场平行于缺陷时,磁性钉扎机制是邻近耦合平面缺陷的主要通量钉扎机制。我们发现令人信服的证据表明,这种钉扎机制是由带状α-Ti沉淀物和Nb-Ti超导体中的人造针所施加的强大的磁通钉扎力所致,而不是迄今人们普遍认为的核心钉扎机制。因为基本钉扎力f(p)(H)在最佳状态下(即,当缺陷厚度t和接近长度xi(N)具有可比较的尺寸时)是非单调的,所以总钉扎力Fp(H)通常不会显示温度缩放。 F-p(H)的大小和形状在常数T处但在不同的t / xi(N)下(例如,不同的Nb-Ti线径)的特征变化也是钉扎机制的直接结果。最佳的助焊剂钉扎状态是在最大化f(p)和获得最大的针钉密度之间的折衷。对于给定的缺陷成分,当t类似于xi(N)/ 3时,达到此状态,而对于变化的缺陷成分,当xi(N)变短时,峰值F-p会变高。具有短xi(N)引脚的人工钉扎中心Nb-Ti线对于在高磁场下获得高J(c)似乎至关重要,因为只有这样,才能在小引脚厚度下优化基本钉扎力,从而允许高数量密度的涡旋-钉相互作用和大的钉扎力。我们在特殊的实验室规模的人工钉扎中心Nb-Ti导线上获得的实验F-p(H,T,t)数据中发现了对我们预测的证实。 [参考:70]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号