首页> 外文期刊>Physics of fluids >Numerical simulation of finite Reynolds number suspension drops settling under gravity
【24h】

Numerical simulation of finite Reynolds number suspension drops settling under gravity

机译:有限雷诺数悬浮液滴在重力作用下沉降的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A suspension drop is a swarm of particles that are suspended in initially still fluid. When settling under the influence of gravity a suspension drop may undergo a complex shape evolution including the formation of a torus and eventual disintegration. In the present work the settling process of initially spherical suspension drops is investigated numerically for low and moderate drop Reynolds numbers Re-d. In the simulations a pseudospectral method is used for the liquid phase combined with a Lagrangian point-particle model for the particulate phase. In the case of low Reynolds numbers (Re-d<1) the suspension drop retains a roughly spherical shape while settling. A few particles leak away into a tail emanating from the rear of the drop. Due to the use of periodic boundaries a hindered settling effect is observed: the drop settling velocity is decreased compared to a suspension drop in infinite fluid. In the Reynolds number range 1less than or equal toRe(d)less than or equal to100 the suspension drop deforms into a torus that eventually becomes unstable and breaks up into a number of secondary blobs. This Reynolds number range has not been investigated systematically in previous studies and is the focus of the present work. It is shown that the number of secondary blobs is primarily determined by the Reynolds number and the particle distribution inside the initial drop. An increased number of particles making up the suspension, i.e., a finer drop discretization, may result in a delayed torus disintegration with a larger number of secondary blobs. The influence of the initial particle distribution as a source of (natural) perturbations and the effect of initially imposed (artificial) shape perturbations on the breakup process are examined in detail. To gain a better understanding of the substructural effects (inside the suspension) leading to torus breakup, the particle field is analyzed from a spectral point of view. To this end, the time evolution of the Fourier coefficients associated with the particle distribution in the azimuthal direction of the torus is studied. (C) 2005 American Institute of Physics.
机译:悬浮液滴是悬浮在最初静止的流体中的大量粒子。当在重力的影响下沉降时,悬浮液液滴可能会经历复杂的形状演变,包括形成圆环和最终崩解。在本工作中,对低和中等液滴雷诺数Re-d进行了初步球形悬浮液滴的沉降过程的数值研究。在模拟中,伪光谱方法用于液相,而拉格朗日点粒子模型则用于颗粒相。在低雷诺数(Re-d <1)的情况下,悬浮液滴在沉降时保持大致球形。少量颗粒泄漏到液滴后部的尾巴中。由于使用了周期性边界,因此观察到了受阻的沉降效果:与无限流体中的悬浮液滴相比,液滴的沉降速度降低了。在小于或等于Re(d)小于或等于100的雷诺数范围内,悬浮液液滴变形为圆环,最终变得不稳定并分解为许多次级斑点。雷诺数范围在以前的研究中尚未得到系统的研究,是当前工作的重点。结果表明,次级斑点的数量主要由雷诺数和初始液滴内部的颗粒分布决定。组成悬浮液的颗粒数量增加,即液滴的离散化更细,可能导致圆环崩解的延迟以及大量的次级斑点。详细检查了作为(自然)扰动源的初始粒子分布的影响以及初始施加(人工)形状扰动对破碎过程的影响。为了更好地理解导致圆环破裂的子结构效应(在悬架内部),从光谱角度分析了粒子场。为此,研究了与粒子在圆环方位角方向上分布相关的傅里​​叶系数的时间演化。 (C)2005美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号