首页> 外文期刊>Chemical engineering journal >A numerical study of a two property catalyst/sorbent pellet design for the sorption-enhanced steam-methane reforming process: Modeling complexity and parameter sensitivity study
【24h】

A numerical study of a two property catalyst/sorbent pellet design for the sorption-enhanced steam-methane reforming process: Modeling complexity and parameter sensitivity study

机译:吸附增强型蒸汽-甲烷重整过程的两性催化剂/吸附剂颗粒设计的数值研究:建模复杂性和参数敏感性研究

获取原文
获取原文并翻译 | 示例
       

摘要

In this study the performance of a combined catalyst/sorbent pellet design for the sorption-enhanced steam-methane reforming process has been investigated. Different mathematical model complexities have been studied and parameter sensitivity analyses have been performed. The mathematical pellet model formulated for the process describes the evolution of species mole fractions, pressure, total concentration, temperature, fluxes, and convection within the voids of the porous pellet. The effective diffusivites are described according to the parallel pore and random pore models, and the mass diffusion fluxes are described according to the Maxwell-Stefan and dusty gas models. Moreover, models proposed in the literature for void fraction changes, product layer diffusion resistance, and degeneration due to multiple carbonation/calcination cycles are employed. The simulated pellet effectiveness factor is a convenient parameter frequently used in modeling and simulations of chemical reactors indicating the relative importance of diffusion and reaction limitations. Thus, in this study, the effectiveness factor behavior due to different mathematical modeling assumptions and model parameter values is elucidated. The combined pellet performance is promising compared to the conventional two-pellet design. For further improved modeling and simulations of the pellet, the characterizing of the pore size distribution is important because of the Knudsen diffusion mechanism. Moreover, the reduction in void fraction with the CaO conversion, product layer growth, and degeneration due to multiple cycles are all important effects in the SE-SMR process because these mechanisms influence on the cycle life time, reaction rate, and capture capacity. For industrial applications, the pellet is only of interest in the capture kinetic controlling step, i.e. before the process becomes controlled by the product layer diffusion resistance.
机译:在这项研究中,已经研究了组合的催化剂/吸附剂颗粒设计用于吸附增强的蒸汽-甲烷重整过程的性能。研究了不同的数学模型复杂性,并进行了参数敏感性分析。为该过程配制的数学颗粒模型描述了多孔颗粒孔隙中物种摩尔分数,压力,总浓度,温度,通量和对流的演变。根据平行孔和随机孔模型描述有效扩散,根据麦克斯韦-斯特凡和粉尘气体模型描述质量扩散通量。而且,采用了在文献中提出的用于空隙率变化,产物层扩散阻力和由于多个碳酸化/煅烧循环而引起的退化的模型。模拟的颗粒有效性因子是化学反应器的建模和模拟中经常使用的方便参数,表明扩散和反应限制的相对重要性。因此,在本研究中,阐明了由于不同的数学建模假设和模型参数值而导致的有效性因子行为。与常规的两粒药丸设计相比,组合药丸的性能很有希望。对于颗粒的进一步改进的建模和模拟,由于克努森扩散机理,表征孔径分布很重要。而且,由于CaO转化,产物层生长和多次循环而导致的空隙率降低,在SE-SMR过程中都是重要的影响,因为这些机制会影响循环寿命,反应速率和捕获能力。对于工业应用,仅在捕获动力学控制步骤中,即在该过程变得由产物层扩散阻力控制之前,才对颗粒感兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号