...
首页> 外文期刊>Chemical engineering journal >Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation
【24h】

Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation

机译:厌氧消化法改善混合微藻(Scenedesmus sp。,Chlorella sp。)和食物垃圾中甲烷的产生:动力学模型和协同影响评估

获取原文
获取原文并翻译 | 示例
           

摘要

Continuous primary energy consumption has motivated the scientists of the world to search for renewable energy sources that could substitute fossil fuels. Microalgae can be an alternative substrate for renewable energy recovery. In this study, biochemical methane potential (BMP) assays were used as a tool to examine the technical potential of methane production from microalgae (MA) through co-digesting with food waste (FW) at different MA: FW ratios on volatile solids (VS). Three mathematical models (i.e. first-order kinetic, modified Gompertz, and Cone models) were also utilized to fit the experimental data, with the purpose of elucidating the biological degradation and principle kinetics of the co-digestion. The results showed that supplementing food waste significantly improved microalgae digestion performance, with the highest methane yield of 639.8 +/- 1.3 mL/g VSadded obtained at a MA: FW ratio of 0.2:0.8, which was 4.99-fold increase with respect to that (106.9 +/- 3.2 mL/g VSadded) of the microalgae alone. Cone model had the best fitness and reliability to the experimental results and could describe the co-digestion kinetics more reasonably. Parameter analysis and synergistic impact evaluation together revealed that the improvement in methanogenesis potential (f(d)) caused by the synergy of co-digestion might be the fundamental cause for the upgraded methane production. These results validated the superiority of co-digestion as a step towards maximizing methane production from microalgae, aiding the development of multi-biomass co-disposal and ultimately bioenergy recovery techniques. (C) 2016 Published by Elsevier B.V.
机译:持续的一次能源消耗促使世界各地的科学家寻找可替代化石燃料的可再生能源。微藻可以作为可再生能源回收的替代基质。在这项研究中,使用生化甲烷潜力(BMP)分析作为检测微藻(MA)通过与食物垃圾(FW)共同消化以不同的MA:FW比例对挥发性固体(VS)进行沼气生产的技术潜力的工具)。三种数学模型(即一阶动力学模型,改进的Gompertz和Cone模型)也用于拟合实验数据,目的是阐明共消化的生物降解和原理动力学。结果表明,补充食物垃圾可显着改善微藻的消化性能,在MA:FW比为0.2:0.8的情况下,添加的最高甲烷产量为639.8 +/- 1.3 mL / g VS,相对于MA / FW比提高了4.99倍(仅添加106.9 +/- 3.2 mL / g VS)微藻。圆锥模型对实验结果具有最佳适应性和可靠性,并且可以更合理地描述共消化动力学。参数分析和协同影响评估共同表明,由共消化协同作用引起的产甲烷潜力(f(d))的提高可能是甲烷产量提高的根本原因。这些结果证实了共消化的优越性,因为它是使微藻甲烷产量最大化的一步,有助于多生物质共处置技术的发展,并最终促进了生物能源回收技术的发展。 (C)2016由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号