首页> 外文期刊>Water Research >Hydroxyl radical and non-hydroxyl radical pathways for trichloroethylene and perchloroethylene degradation in catalyzed H_2O_2 propagation systems
【24h】

Hydroxyl radical and non-hydroxyl radical pathways for trichloroethylene and perchloroethylene degradation in catalyzed H_2O_2 propagation systems

机译:催化的H_2O_2传播系统中三氯乙烯和四氯乙烯降解的羟自由基和非羟自由基途径

获取原文
获取原文并翻译 | 示例
           

摘要

Catalyzed H2O2 propagations (CHP) is characterized by the most robust reactivity of any of the in situ chemical oxidation (ISCO) technologies because it generates the strong oxidant hydroxyl radical along with nucleophiles + reductants, such as superoxide radical. The most common groundwater contaminants, trichioroethylene (TCE) and perchloroethylene (PCE), were used as model contaminants in evaluating the effect of hydrogen peroxide (H2O2) dosage on contaminant destruction kinetics. Both TCE and PCE degradation rates increased with H2O2 dosages up to 0.1 M, and then decreased with higher H2O2 dosages. Parallel reactions conducted with the addition of the hydroxyl radical scavenger 2-propanol and the hydroxyl radical -specific probe nitrobenzene confirmed that hydroxyl radical is primarily responsible for TCE and PCE degradation; however, 5-20% of their degradation was attributed to a non-hydroxyl radical mechanism. Reactions conducted with the superoxide probe tetranitromethane showed that superoxide generation rates increased with increasing H2O2 doses. These results were confirmed by electron spin resonance spectroscopy. Therefore, the non-hydroxyl radical pathway for TCE and PCE degradation at H2O2 = 0.5 M was likely via nucleophilic attack by superoxide. The results of this research demonstrate that contaminants present in the aqueous phase that are reactive with hydroxyl radical require only low doses of H2O2 (= 0.1 M), but subsurface systems contaminated with species not reactive with hydroxyl radical (e.g., carbon tetrachloride) require H2O2 concentrations = 0.5 M. (C) 2019 Elsevier Ltd. All rights reserved.
机译:催化的H2O2传播(CHP)的特征是任何原位化学氧化(ISCO)技术中最强的反应性,因为它会生成强氧化剂羟基以及亲核试剂和还原剂,例如超氧化物自由基。在评估过氧化氢(H2O2)用量对污染物破坏动力学的影响时,最常见的地下水污染物三氯乙烯(TCE)和全氯乙烯(PCE)被用作模型污染物。 TCE和PCE降解率均随H2O2剂量(最高至0.1 M)的增加而增加,然后随H2O2剂量的增加而降低。加入羟基自由基清除剂2-丙醇和羟基自由基特异性探针硝基苯进行的平行反应证实,羟基自由基是导致TCE和PCE降解的主要原因。然而,它们降解的5-20%归因于非羟基自由基机理。用超氧化物探针四硝基甲烷进行的反应表明,超氧化物的生成速率随H2O2剂量的增加而增加。这些结果通过电子自旋共振光谱法得到证实。因此,H2O2> = 0.5 M时,TCE和PCE降解的非羟基自由基途径可能是通过超氧化物的亲核攻击。这项研究的结果表明,水相中与羟基自由基发生反应的污染物仅需要少量的H2O2(<= 0.1 M),而被不与羟基自由基发生反应的物质(例如四氯化碳)污染的地下系统则需要H2O2浓度> = 0.5M。(C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号