首页> 外文期刊>Surface Science >Influence of axial tensile strain on the electronic and structural properties as well as NO gas sensitivity and reactivity of C-doped SW-BNNTs
【24h】

Influence of axial tensile strain on the electronic and structural properties as well as NO gas sensitivity and reactivity of C-doped SW-BNNTs

机译:轴向拉伸应变对掺碳SW-BNNTs电子和结构性能以及NO气敏性和反应性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The insulating character of BNNTs strongly imposes a great restriction on their applicability in nano-electronic devices. Therefore, it is desirable to find the practical routes for reducing the H-L gap. In this work, we demonstrate that the structural and electronic properties of the C-doped SW-BNNT can be significantly engineered and tuned by applying the axial tensile strain. Defect formation energies, cohesive energies, dipole moments, NBO charges, and global reactivity descriptors for un-doped SW-BNNT and C-1.3-doped SW-BNNTs are calculated upon the axial strain. The B3LYP/6-31 +G(d) calculated H-L gap for five C-doped SW-BNNTs are expected to be smaller than that of un-doped SW-BNNT. At 10% axial tensile strain, C-B NT is a suitable conductance with a 1.947 eV H-L gap. The decrease in the H-L gap for 2C-doped C-N,C-B (-0.839 eV) NT within 15% strain is greater than 1C- and 3C-doped SW-BNNTs. In the second part,of this work, reactivity and the sensitivity of strained C1-2-doped SW-BNNTs toward NO gas were evaluated at M06-2X/6-31 ++G(d,p) level of theory. Optimized structures, molecular graphs, adsorption energies (AE), dispersion corrected AEs, H-L gap, NBO charges, charge transfer values, density of states and electrostatic potentials were calculated. The strained C1-3-doped SW-BNNTs showed an increased ability for the sensitivity and adsorption of NO molecule, as compared with unstrained doped SW-BNNT. In general, the C-N,C-B NTs have practically less potential for the adsorption of NO molecule than C-B and C-N ones. (C) 2017 Elsevier B.V. All rights reserved.
机译:BNNT的绝缘特性强烈限制了其在纳米电子器件中的应用。因此,期望找到减小H-L间隙的实用途径。在这项工作中,我们证明了可以通过施加轴向拉伸应变来显着设计和调整C掺杂的SW-BNNT的结构和电子性能。根据轴向应变计算未掺杂的SW-BNNT和C-1.3掺杂的SW-BNNT的缺陷形成能,内聚能,偶极矩,NBO电荷和整体反应性描述符。五个C掺杂的SW-BNNT的B3LYP / 6-31 + G(d)计算的H-L间隙预计将小于未掺杂的SW-BNNT。在10%轴向拉伸应变下,C-B NT具有1.947 eV H-L间隙的合适电导。在15%应变范围内,掺杂2C的C-N,C-B(-0.839 eV)NT的H-L间隙的减小大于掺杂1C和3C的SW-BNNT。在这项工作的第二部分中,在理论上以M06-2X / 6-31 ++ G(d,p)的水平评估了应变的C1-2掺杂的SW-BNNTs对NO​​气体的反应性和敏感性。计算了优化的结构,分子图,吸附能(AE),色散校正后的AE,H-L间隙,NBO电荷,电荷转移值,态密度和静电势。与未应变的掺杂的SW-BNNT相比,应变的C1-3掺杂的SW-BNNT显示出增加的NO分子敏感性和吸附能力。通常,C-N,C-B NTs吸附NO分子的潜力实际上比C-B和C-N吸附剂低。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号