首页> 外文期刊>Space Weather >Artificial neural network prediction model for geosynchronous electron fluxes: Dependence on satellite position and particle energy
【24h】

Artificial neural network prediction model for geosynchronous electron fluxes: Dependence on satellite position and particle energy

机译:地球同步电子通量的人工神经网络预测模型:取决于卫星位置和粒子能量

获取原文
获取原文并翻译 | 示例
           

摘要

Geosynchronous satellites are often exposed to energetic electrons, the flux of which varies often to a large extent. Since the electrons can cause irreparable damage to the satellites, efforts to develop electron flux prediction models have long been made until recently. In this study, we adopt a neural network scheme to construct a prediction model for the geosynchronous electron flux in a wide energy range (40keV to >2 MeV) and at a high time resolution (as based on 5min resolution data). As the model inputs, we take the solar wind variables, geomagnetic indices, and geosynchronous electron fluxes themselves. We also take into account the magnetic local time (MLT) dependence of the geosynchronous electron fluxes. We use the electron data from two geosynchronous satellites, GOES 13 and 15, and apply the same neural network scheme separately to each of the GOES satellite data. We focus on the dependence of prediction capability on satellite's magnetic latitude and MLT as well as particle energy. Our model prediction works less efficiently for magnetic latitudes more away from the equator (thus for GOES 13 than for GOES 15) and for MLTs nearer to midnight than noon. The magnetic latitude dependence is most significant for an intermediate energy range (a few hundreds of keV), and the MLT dependence is largest for the lowest energy (40 keV). We interpret this based on degree of variance in the electron fluxes, which depends on magnetic latitude and MLT at geosynchronous orbit as well as particle energy. We demonstrate how substorms affect the flux variance.
机译:地球同步卫星经常暴露于高能电子,高能电子的通量经常在很大的范围内变化。由于电子会给卫星造成无法弥补的损害,因此直到最近,人们一直在努力开发电子通量预测模型。在这项研究中,我们采用神经网络方案为宽能量范围(40keV至> 2 MeV)和高时间分辨率(基于5min分辨率数据)的地球同步电子通量构建预测模型。作为模型输入,我们采用了太阳风变量,地磁指数和地球同步电子通量本身。我们还考虑了地球同步电子通量的磁性本地时间(MLT)依赖性。我们使用来自两个地球同步卫星GOES 13和15的电子数据,并将相同的神经网络方案分别应用于每个GOES卫星数据。我们专注于预测能力对卫星磁纬度和MLT以及粒子能量的依赖性。对于距赤道更远的磁纬度(对于GOES 13,对于GOES 15),对于比午夜更接近午夜的MLT,我们的模型预测的效率较低。对于中等能量范围(几百keV),纬度依赖性最显着;对于最低能量(40 keV),MLT依赖性最大。我们根据电子通量的变化程度来解释这一点,该变化程度取决于地球同步轨道上的磁纬度和MLT以及粒子能量。我们演示了亚暴如何影响通量方差。

著录项

  • 来源
    《Space Weather》 |2016年第4期|313-321|共9页
  • 作者单位

    Department of Astronomy and Space Science, Chungbuk National University, Cheongju, South Korea, Korea Astronomy and Space Science Institute, and Department of Astronomy and Space Science, Korea University of Science and Technology, Daejeon, South Korea;

    Department of Astronomy and Space Science, Chungbuk National University, Cheongju, South Korea;

    Division of Science Education, College of Education, Daegu University, Gyeongsan, Gyeongbuk, South Korea;

    Korea Astronomy and Space Science Institute, and Department of Astronomy and Space Science, Korea University of Science and Technology, Daejeon, South Korea;

    Korean Space Weather Center, National Radio Research Agency, Jeju, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Predictive models; Neural networks; Satellites; Autoregressive processes; Magnetic separation; Satellite broadcasting; Meteorology;

    机译:预测模型;神经网络;卫星;自回归过程;磁分离;卫星广播;气象学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号