首页> 外文期刊>Semiconductor science and technology >Controlling contact resistance in top-gate polythiophene-based field-effect transistors by molecular engineering
【24h】

Controlling contact resistance in top-gate polythiophene-based field-effect transistors by molecular engineering

机译:通过分子工程控制基于顶栅聚噻吩的场效应晶体管的接触电阻

获取原文
获取原文并翻译 | 示例
           

摘要

We report on an effective control of source-drain contact resistance by insertion of a self-assembled monolayer at the metal/semiconductor interface in top-gate staggered polymer field-effect transistors fabricated with poly(2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene) (pBTTT). The device performance can be dramatically improved by introducing a fluorinated alkyl-thiol, 1H, 1H, 2H, 2H-perflourodecanethiol (PFDT) on the gold source-drain contacts. The PFDT-induced interface dipole and hydrophobic surface enables both a favourable shift of work function lowering the hole injection barrier via dipole alignment and a large crystal growth of pBTTT film with a unique lamellar morphology near to the contact. The optimized device with PFDT-modified gold contact plus OTS-treated substrate exhibits a high field-effect mobility above 0.4 cm~2 V~(-1) s~(-1) and low contact resistance of 0.45 MΩ at the gate voltage of —60 V.
机译:我们报告了通过在由聚(2,5-双(3-十四烷基噻吩-)制造的顶栅交错聚合物场效应晶体管中的金属/半导体界面处插入自组装单层膜,有效控制源漏接触电阻的方法。 2-基)噻吩并[3,2-b]噻吩(pBTTT)。通过在金源漏电极上引入氟化烷基硫醇1H,1H,2H,2H-全氟十二烷硫醇(PFDT),可以显着提高器件性能。 PFDT诱导的界面偶极子和疏水性表面既可以通过偶极子排列实现有利的功函数转移,从而降低空穴注入势垒,又可以在接触附近具有独特的层状形态的pBTTT膜实现大的晶体生长。具有PFDT修饰的金触点和OTS处理的衬底的优化器件在0.4 cm〜2 V〜(-1)s〜(-1)以上的条件下显示出高场效应迁移率,并且栅极电压为0.45MΩ时接触电阻低,仅为0.45MΩ。 —60V。

著录项

  • 来源
    《Semiconductor science and technology》 |2011年第3期|p.4.1-4.7|共7页
  • 作者单位

    Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 OHE, UK Department of Chemical Engineering, Hanbat National University, 16-1, Duckmyoung-dong,Yuseong-gu, Daejeon, 305-719, Korea;

    Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 OHE, UK;

    Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 OHE, UK Instituto de Microelectronica de Madrid, CSIC C/Isaac Newton 8 28760, Tres Cantos Madrid, Spain;

    Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 OHE, UK;

    Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 OHE, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号