首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Fundamental signatures of short- and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions
【24h】

Fundamental signatures of short- and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions

机译:在Au / SAM交界处的蓝色铜蛋白天青蛋白的短程和远程电子转移的基本特征

获取原文
获取原文并翻译 | 示例
       

摘要

The blue copper protein from Pseudomonas aeruginosa, azurin, immobilized at gold electrodes through hydrophobic interaction with alkanethiol self-assembled monolayers (SAMs) of the general type [-S - (CH_2)_n - CH_3] (n = 4,10, and 15) was employed to gain detailed insight into the physical mechanisms of short- and long-range biomolecular electron transfer (ET). Fast scan cyclic voltammetry and a Marcus equation analysis were used to determine unimolecular standard rate constants and reorganization free energies for variable n, temperature (2-55 ℃), and pressure (5-150 MPa) conditions. A novel global fitting procedure was found to account for the reduced ET rate constant over almost five orders of magnitude (covering different n, temperature, and pressure) and revealed that electron exchange is a direct ET process and not conformationally gated. AIL the ET data, addressing SAMs with thickness variable over ca. 12 A, could be described by using a single reorganization energy (0.3 eV), however, the values for the enthalpies and volumes of activation were found to vary with n. These data and their comparison with theory show how to discriminate between the fundamental signatures of short- and long-range biomolecular ET that are theoretically anticipated for the adiabatic and nonadiabatic ET mechanisms, respectively.
机译:铜绿假单胞菌的蓝铜蛋白,天青蛋白,通过与一般类型[-S-(CH_2)_n-CH_3]的链烷硫醇自组装单分子层(SAMs)的疏水相互作用固定在金电极上(n = 4,10和15 )被用来深入了解短程和长程生物分子电子转移(ET)的物理机制。使用快速扫描循环伏安法和Marcus方程分析来确定变量n,温度(2-55℃)和压力(5-150 MPa)条件下的单分子标准速率常数和重组自由能。发现了一种新颖的全局拟合程序,该程序解决了几乎五个数量级(涵盖不同的n,温度和压力)下降低的ET速率常数,并揭示了电子交换是直接ET过程,而不是构象门控的。 AIL ET数据,处理厚度变化超过ca的SAM。可以通过使用单个重组能量(0.3 eV)来描述12 A,但是,发现焓值和激活量随n变化。这些数据及其与理论的比较显示了如何区分短程和长程生物分子ET的基本特征,这在理论上分别是绝热和非绝热ET机制所预期的。

著录项

  • 来源
  • 作者单位

    Department of Chemistry and Pharmacy, University of Erlangen-Nuernberg, 91058 Erlangen, Germany Institute for Biophysics and Bio-Nanosciences,Department of Physics, Tbilisi State University, 0128 Tbilisi, Georgian Republic Department of Molecular Biophysics, Institute of Molecular Biology and Biophysics, 0160 Tbilisi, Georgian Republic Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260;

    rnDepartment of Chemistry and Pharmacy, University of Erlangen-Nuernberg, 91058 Erlangen, Germany Institute for Biophysics and Bio-Nanosciences,Department of Physics, Tbilisi State University, 0128 Tbilisi, Georgian Republic Department of Molecular Biophysics, Institute of Molecular Biology and Biophysics, 0160 Tbilisi, Georgian Republic;

    rnDepartment of Chemistry and Pharmacy, University of Erlangen-Nuernberg, 91058 Erlangen, Germany Institute for Biophysics and Bio-Nanosciences,Department of Physics, Tbilisi State University, 0128 Tbilisi, Georgian Republic;

    rnDepartment of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260;

    rnDepartment of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260;

    rnDepartment of Chemistry and Pharmacy, University of Erlangen-Nuernberg, 91058 Erlangen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electron transfer mechanism; pressure; protein friction; reorganization; temperature;

    机译:电子转移机理压力;蛋白质摩擦重组;温度;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号