首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission
【24h】

Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission

机译:Pink1通过线粒体裂变调节氧化磷酸化机制

获取原文
获取原文并翻译 | 示例
           

摘要

Mutations in PTEN-induced kinase 1 (PINK1), a mitochondrial Ser/ Thr kinase, cause an autosomal recessive form of Parkinson's disease (PD), PARK6. To investigate the mechanism of PINK1 patho-genesis, we used the Drosophila Pinki knockout (KO) model. In mitochondria isolated from Pink1-KO flies, mitochondrial respiration driven by the electron transport chain (ETC) is significantly reduced. This reduction is the result of a decrease in ETC complex I and IV enzymatic activity. As a consequence, Pink1-KO flies also display a reduced mitochondrial ATP synthesis. Because mitochondrial dynamics is important for mitochondrial function and Pinki-KO flies have defects in mitochondrial fission, we explored whether fission machinery deficits underlie the bioenergetic defect in Pinki-KO flies. We found that the bioenergetic defects in the Pink1-KO can be ameliorated by expression of Drp1, a key molecule in mitochondrial fission. Further investigation of the ETC complex integrity in wild type, Pinki-KO, Plnk1-KO/Drp1 transgenic, or Drp1 trans-genic flies indicates that the reduced ETC complex activity is likely derived from a defect in the ETC complex assembly, which can be partially rescued by increasing mitochondrial fission. Taken together, these results suggest a unique pathogenic mechanism of PINK1 PD: The loss of PINK1 impairs mitochondrial fission, which causes defective assembly of the ETC complexes, leading to abnormal bioenergetics.
机译:PTEN诱导的激酶1(PINK1)(线粒体Ser / Thr激酶)中的突变会导致帕金森氏病(PD),PARK6的常染色体隐性遗传。为了研究PINK1发病机理,我们使用了果蝇Pinki基因敲除(KO)模型。从Pink1-KO蝇中分离出的线粒体中,由电子传输链(ETC)驱动的线粒体呼吸作用显着降低。这种降低是ETC复合体I和IV酶活性降低的结果。结果,Pink1-KO蝇也显示出降低的线粒体ATP合成。由于线粒体动力学对于线粒体功能至关重要,而Pinki-KO蝇在线粒体裂变中具有缺陷,因此我们探讨了裂变机制缺陷是否是Pinki-KO蝇的生物能缺陷的基础。我们发现Pink1-KO中的生物能缺陷可以通过Drp1的表达得到改善,Drp1是线粒体裂变的关键分子。对野生型,Pinki-KO,Plnk1-KO / Drp1转基因或Drp1转基因果蝇中ETC复合物完整性的进一步研究表明,降低的ETC复合物活性可能源自ETC复合物装配中的缺陷,这可能是由于通过增加线粒体裂变部分拯救。综上所述,这些结果表明了PINK1 PD的独特致病机制:PINK1的缺失会损害线粒体裂变,从而导致ETC复合物的组装不良,从而导致异常的生物能。

著录项

  • 来源
  • 作者单位

    Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065;

    Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065;

    Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065;

    Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065;

    Department of Pathology,Stanford University School of Medicine, Stanford, CA 94305;

    Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065 Department of Neurology, Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    pathology; mitochondrial movement;

    机译:病理;线粒体运动;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号