首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Numerical modelling of a low Reynolds number plunging airfoil flow field characteristics
【24h】

Numerical modelling of a low Reynolds number plunging airfoil flow field characteristics

机译:低雷诺数突降翼型流场特性的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Complex viscous mechanisms such as leading edge vortices play a dominant role in the generation of instantaneous force and moment in low Reynolds number flows. The dependence of the corresponding fluid flow characteristics on the governing flow and system parameters in unsteady motions, e.g. plunging, adds to the inherent complexity of the problem. The respective fluid dynamics of such a flow is investigated here via computational fluid dynamics based on a finite volume method. The governing equations are the unsteady, incompressible two-dimensional Navier-Stokes equations. The flow field and vortical patterns around a thin ellipsoidal plunging airfoil are examined in detail with and without freestream velocity, and the effects of Reynolds and Strouhal numbers on the flow characteristics are explored. It is shown that both Reynolds and Strouhal numbers increase the aerodynamic performance in nonzero freestream velocity simulations. Increasing Reynolds and Strouhal numbers causes the airfoil to generate thrust for some time intervals of the plunging period. This thrust generation is penalized with higher peaks of drag coefficient when Strouhal number increases. However, the same penalty in the Reynolds number effect simulations is negligible compared to that of the Strouhal number effects. Increasing Strouhal number causes the airfoil to experience negative pitching moment with higher peak values for longer time intervals, but Reynolds number does not change the time at which negative pitching moment is exerted on the airfoil, but the peaks of pitching moment depend on the governing Reynolds number. The lift coefficient changes noticeably versus Strouhal number, where there is significant lead/lag at the peak lift coefficient for zero-freestream velocity simulations. Reynolds number effects on the lift coefficients mostly occur around the time at which the peak lift coefficient is obtained for both zero and nonzero freestream velocity cases. All of these effects are caused by the complex vortical patterns around the airfoil, described throughout the present article.
机译:复杂的粘性机制(例如前沿涡旋)在低雷诺数流中的瞬时力和力矩的产生中起主要作用。在非定常运动中,例如相应的流体流动特性对控制流量和系统参数的依赖性。暴跌,增加了问题的内在复杂性。在此,通过基于有限体积法的计算流体动力学来研究这种流动的各个流体动力学。控制方程是不稳定的,不可压缩的二维Navier-Stokes方程。在有和没有自由流速度的情况下,详细检查了一个椭圆形的倾斜翼型周围的流场和涡流模式,并研究了雷诺数和斯特劳哈尔数对流动特性的影响。结果表明,在非零自由流速度模拟中,雷诺数和斯特劳哈尔数均提高了空气动力学性能。雷诺数和斯特劳哈尔数的增加会导致机翼在下降期间的某些时间间隔内产生推力。当Strouhal数增加时,这种推力产生会受到更高的阻力系数峰值的影响。但是,与斯特劳哈尔数效应相比,雷诺数效应模拟中的相同损失可忽略不计。增加的Strouhal数会导致机翼在更长的时间间隔内经历较高峰值的负俯仰力矩,但是雷诺数不会改变负向俯仰力矩施加在机翼上的时间,但是俯仰力矩的峰值取决于控制雷诺数数。升力系数相对于Strouhal数显着变化,对于零自由流速度模拟,在峰值升力系数处存在明显的超前/滞后。雷诺数对升力系数的影响主要发生在零和非零自由流速度情况下获得峰值升力系数的时间附近。所有这些影响都是由机翼周围复杂的旋涡模式引起的,本文通篇对此进行了介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号