首页> 外文期刊>Physical review. B, Condensed Matter And Materials Physics >Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
【24h】

Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques

机译:密度泛函理论计算与机器学习技术相结合的无机化合物带隙预测模型

获取原文
获取原文并翻译 | 示例
           

摘要

Machine learning techniques are applied to make prediction models of the G_0 W_0 band gaps for 270 inorganic compounds using Kohn-Sham (KS) band gaps, cohesive energy, crystalline volume per atom, and other fundamental information of constituent elements as predictors. Ordinary least squares regression (OLSR), least absolute shrinkage and selection operator, and nonlinear support vector regression (SVR) methods are applied with two levels of predictor sets. When the KS band gap by generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) or modified Becke-Johnson (mBJ) is used as a single predictor, the OLSR model predicts the G_0W_0 band gap of randomly selected test data with the root-mean-square error (RMSE) of 0.59 eV. When KS band gap by PBE and mBJ methods are used together with a set of predictors representing constituent elements and compounds, the RMSE decreases significantly. The best model by SVR yields the RMSE of 0.24 eV. Band gaps estimated in this way should be useful as predictors for virtual screening of a large set of materials.
机译:应用机器学习技术,以Kohn-Sham(KS)带隙,内聚能,每个原子的晶体体积和其他组成元素的基本信息作为预测因子,来预测270种无机化合物的G_0 W_0带隙。普通最小二乘回归(OLSR),最小绝对收缩和选择算子以及非线性支持向量回归(SVR)方法应用于两个级别的预测器集。当通过Perdew-Burke-Ernzerhof(PBE)或经过修改的Becke-Johnson(mBJ)的广义梯度近似法将KS带隙用作单个预测因子时,OLSR模型将以根为根来预测随机选择的测试数据的G_0W_0带隙。均方误差(RMSE)为0.59 eV。当通过PBE和mBJ方法的KS带隙与代表组成元素和化合物的一组预测变量一起使用时,RMSE显着降低。 SVR的最佳模型产生的RMSE为0.24 eV。以这种方式估算的带隙应该用作虚拟筛选大量材料的预测指标。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materials Physics》 |2016年第11期|115104.1-115104.12|共12页
  • 作者单位

    Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan;

    Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan,Elements Strategy Initiative for Structure Materials (ESISM), Kyoto University, Kyoto 606-8501, Japan,Center for Materials Research by Information Integration, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan;

    Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan,Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan;

    Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan;

    Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan,Elements Strategy Initiative for Structure Materials (ESISM), Kyoto University, Kyoto 606-8501, Japan,Center for Materials Research by Information Integration, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan,Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号