首页> 外文期刊>Nuclear science and engineering >An Efficient Multiproblem Strategy for Accurate Solutions of Linear Particle Transport Problems in Spherical Geometry
【24h】

An Efficient Multiproblem Strategy for Accurate Solutions of Linear Particle Transport Problems in Spherical Geometry

机译:球形几何中线性粒子传输问题的精确解的有效多问题策略

获取原文
获取原文并翻译 | 示例
       

摘要

A novel multiproblem methodology devised to manufacture highly accurate numerical solutions of the linear Boltzmann equation is proposed. As an alternative to classical discretization schemes that focus on a single mesh, the multiproblem approach seeks transport solutions as the limit of a sequence of calculations executed on successively more refined grids. The sequence of approximations serves as a basis for the extrapolation of the solution toward its mesh-independent limit. Furthermore, the multiproblem strategy allows an optimization of the computational effort whenever compared to the single-grid approach. Indeed, the solution obtained on an unrefined mesh is employed as the starting guess for transport calculations on the next grid of the sequence, drastically reducing the number of inner iterations needed on the highly refined mesh. The efficiency of the algorithm may be further improved by combining the source iterations with a convergence acceleration scheme based on nonlinear extrapolation algorithms. To evaluate the performance of the proposed approach, the multiproblem methodology is applied to solve linear transport problems in spherical geometry, which are known to feature special properties whenever compared with the transport of particles in Cartesian geometry. The methodology is implemented by choosing the presumably simplest and most widespread numerical transport algorithm (i.e., discrete ordinates with diamond differences). Results show that five- to six-digit accuracy can be obtained in a competitive computational time without resorting to powerful workstations.
机译:提出了一种新颖的多问题方法,旨在制造线性玻尔兹曼方程的高精度数值解。作为专注于单个网格的经典离散化方案的替代方法,多问题方法寻求传输解决方案,作为在逐次提高的网格上执行的一系列计算的极限。逼近序列用作将解决方案推向其与网格无关的极限的基础。此外,与单网格方法相比,多问题策略可以优化计算工作量。实际上,在未精炼的网格上获得的解被用作序列下一个网格上运输计算的起始猜测,从而大大减少了在高度精炼的网格上所需的内部迭代次数。通过将源迭代与基于非线性外推算法的收敛加速方案相结合,可以进一步提高算法的效率。为了评估所提出方法的性能,将多问题方法应用于解决球形几何体中的线性传输问题,该问题与笛卡尔几何中的颗粒传输相比具有特殊的特性。该方法是通过选择可能最简单,应用最广泛的数值传输算法(即具有钻石差异的离散纵坐标)来实现的。结果表明,在不依靠强大的工作站的情况下,可以在竞争性的计算时间内获得五到六位数的精度。

著录项

  • 来源
    《Nuclear science and engineering》 |2012年第2期|p.103-124|共22页
  • 作者单位

    Politecnico di Torino, Dipartimento di Energetica Corso Duca degli Abruzzi 24, 10029 Torino, Italy;

    University of Arizona, Department of Systems and Industrial Engineering P.O. Box 210020, Tucson, Arizona 85721;

    University of Arizona, Department of Aerospace and Mechanical Engineering P.O. Box 210119, Tucson, Arizona 85721;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号