首页> 外文期刊>Nuclear fusion >The national spherical torus experiment (NSTX) research programme and progress towards high beta, long pulse operating scenarios
【24h】

The national spherical torus experiment (NSTX) research programme and progress towards high beta, long pulse operating scenarios

机译:国家球形圆环实验(NSTX)研究计划,并朝着高贝塔,长脉冲操作场景发展

获取原文
获取原文并翻译 | 示例
           

摘要

A major research goal of the national spherical torus experiment is establishing long-pulse, high beta, high confinement operation and its physics basis. This research has been enabled by facility capabilities developed during 2001 and 2002, including neutral beam (up to 7 MW) and high harmonic fast wave (HHFW) heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with β_T≡>/(B_(T0)~2/2_(μ0) of up to 35%. Normalized beta values often exceed the no-wall limit, and studies suggest that passive wall mode stabilization enables this for H mode plasmas with broad pressure profiles. The viability of long, high bootstrap current fraction operations has been established for ELMing H mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fuelling are likely contributing to a reduction in H mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary heated plasmas examined thus far. HHFW effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is obtained by comparision of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. Studies of emissions from electron Bernstein waves indicate a density scale length dependence of their transmission across the upper hybrid resonance near the plasma edge that is consistent with theoretical predictions. A peak heat flux to the divertor targets of 10 MW m~(-2) has been measured in the H mode, with large asymmetries being observed in the power deposition between the inner and outer strike points. Non-inductive plasma startup studies have focused on coaxial helicity injection. With this technique, toroidal currents up to 400 kA have been driven, and studies to assess flux closure and coupling to other current drive techniques have begun.
机译:国家球形圆环实验的主要研究目标是建立长脉冲,高β,高约束操作及其物理基础。这项研究得到了2001和2002年期间开发的设施能力的支持,其中包括中性束(最高7 MW)和高谐波快波(HHFW)加热(最高6 MW),最高6 kG的环形场,最高等离子电流1.5 MA,灵活的形状控制和墙面准备技术。这些功能使得能够生成高达35%的β_T≡> /(B_(T0)〜2 / 2_(μ0)等离子。标准化的beta值通常会超过无壁限制,研究表明,无源壁模态稳定使宽压力分布的H型等离子体能够实现这一目标,对于环贝塔值超过15%并持续多个电流弛豫时间的ELMing H型等离子体,已经建立了长期,高自举电流分率操作的可行性。进行壁调节和加油可能会降低H模式功率阈值,电子热传导是到目前为止检查的辅助加热等离子体中主要的热损失通道,HHFW有效地加热了电子,并且观察到其快速束离子的加速。通过比较具有匹配的密度和温度曲线但发射的HHFW波的相位不同的等离子体中的环路电压演化,可以获得用于HHFW电流驱动的方法。电子伯恩斯坦波的f发射表明它们在等离子体边缘附近通过上混合共振的传输的密度尺度长度依赖性,这与理论预测是一致的。在H模式下测得的散流器目标的峰值热通量为10 MW m〜(-2),在内外击点之间的功率沉积中观察到较大的不对称性。非感应等离子体启动研究集中于同轴螺旋注入。利用这种技术,已经驱动了高达400 kA的环形电流,并且已经开始进行研究以评估磁通量的闭合以及与其他电流驱动技术的耦合。

著录项

  • 来源
    《Nuclear fusion》 |2003年第12期|p. 1653-1664|共12页
  • 作者单位

    Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA;

    Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA;

    Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN, USA;

    Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA;

    Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA;

    University of California, San Diego, CA, USA;

    CEA Cadarache, France;

    Oak Ridge National Laboratory, Oak Ridge, TN, USA;

    Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子核物理学、高能物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号