首页> 外文期刊>Nuclear fusion >Resistivity scaling of rotating magnetic field current drive in FRCs
【24h】

Resistivity scaling of rotating magnetic field current drive in FRCs

机译:FRC中旋转磁场电流驱动的电阻率缩放

获取原文
获取原文并翻译 | 示例
           

摘要

Rotating magnetic fields (RMFs) have been used to both form and sustain low density, prolate FRCs in the translation confinement and sustainment (TCS) facility. The two most important factors governing performance are the plasma resistivity, which sets the maximum density for which toroidal current can be maintained, and the energy loss rate, which sets the plasma temperature. The plasma resistivity has been determined by carefully measuring the amount of RMF power absorbed by the RFC. When the ratio of RMF magnitude, B_ω, to external poloidal confinement field, B_e, is high, this resistivity is very adversely affected by the RMF drive process. However, when B_ω/B_e falls below about 0.3, the resistivity returns to values typical of non-driven FRCs. The observed scaling leads to a density dependence of n_e ~ B_ω/r_sω~(1/2) where r_s is the RFC separatrix radius and ω is the RMF frequency. Since the FRC contains little or no toroidal field, B_e is proportional to (n_eT_t)~(1/2) where T_t = T_e + T_i is the sum of the electron and ion temperatures. In the present experiments, except for the initial start-up phase where T_t can exceed 100 eV, the plasma temperature is limited to about 40 eV by high oxygen impurity levels. Thus, low B_ω/B_e, low resistivity operation was only realized by operating at low values of B_ω. The RMF drive sustains particles as well as flux, and resistive input powers can be in the MW, range at higher values of B_ω, so that high temperature, steady-state operation should be possible once impurity levels are reduced. Changes are being made to the present 'O-ring' sealed, quartz chambered TCS to provide bakable metal walls and wall conditioning as in other quasi-steady fusion facilities.
机译:在平移限制和维持(TCS)设施中,旋转磁场(RMF)已用于形成和维持低密度,扁平的FRC。决定性能的两个最重要的因素是等离子电阻率和能量损失率,等离子电阻率确定可维持环形电流的最大密度,而能量损耗率决定等离子体温度。等离子体电阻率是通过仔细测量RFC吸收的RMF功率来确定的。当RMF幅值B_ω与外部极小约束场B_e的比率较高时,该电阻率会受到RMF驱动过程的不利影响。但是,当B_ω/ B_e降至约0.3以下时,电阻率将返回非驱动FRC的典型值。观测到的缩放导致密度依赖性为n_e〜B_ω/r_sω〜(1/2),其中r_s是RFC分离半径,ω是RMF频率。由于FRC几乎没有或没有环形场,因此B_e与(n_eT_t)〜(1/2)成比例,其中T_t = T_e + T_i是电子和离子温度的总和。在本实验中,除了初始启动阶段(T_t可以超过100 eV)之外,高氧杂质水平将等离子体温度限制在约40 eV。因此,低B_ω/ B_e,低电阻率操作仅通过以低B_ω值操作来实现。 RMF驱动器可维持颗粒以及通量,并且电阻输入功率可以在MW范围内,处于较高的B_ω值,因此一旦降低杂质含量,就应该可以进行高温,稳态操作。目前的“ O形圈”密封,石英腔室TCS进行了更改,以提供可烘烤的金属壁和其他准稳定融合设备中的壁调节功能。

著录项

  • 来源
    《Nuclear fusion》 |2003年第10期|p. 1091-1100|共10页
  • 作者单位

    Redmond Plasma Physics Laboratory, University of Washington, WA 98195, USA;

    Redmond Plasma Physics Laboratory, University of Washington, WA 98195, USA;

    Redmond Plasma Physics Laboratory, University of Washington, WA 98195, USA;

    Redmond Plasma Physics Laboratory, University of Washington, WA 98195, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子核物理学、高能物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号