首页> 外文期刊>Nature >Observation of thermal Hawking radiation and its temperature in an analogue black hole
【24h】

Observation of thermal Hawking radiation and its temperature in an analogue black hole

机译:在模拟黑洞中观察热巢辐射及其温度

获取原文
获取原文并翻译 | 示例
           

摘要

The entropy of a black hole(1) and Hawking radiation(2) should have the same temperature given by the surface gravity, within a numerical factor of the order of unity. In addition, Hawking radiation should have a thermal spectrum, which creates an information paradox(3,4). However, the thermality should be limited by greybody factors(5), at the very least(6). It has been proposed that the physics of Hawking radiation could be verified in an analogue system(7), an idea that has been carefully studied and developed theoretically(8-18). Classical white-hole analogues have been investigated experimentally(19-21), and other analogue systems have been presented(22,23). The theoretical works and our long-term study of this subject(15,24-27) enabled us to observe spontaneous Hawking radiation in an analogue black hole(28). The observed correlation spectrum showed thermality at the lowest and highest energies, but the overall spectrum was not of the thermal form, and no temperature could be ascribed to it. Theoretical studies of our observation made predictions about the thermality and Hawking temperature(29-33). Here we construct an analogue black hole with improvements compared with our previous setup, such as reduced magnetic field noise, enhanced mechanical and thermal stability and redesigned optics. We find that the correlation spectrum of Hawking radiation agrees well with a thermal spectrum, and its temperature is given by the surface gravity, confirming the predictions of Hawking's theory. The Hawking radiation observed is in the regime of linear dispersion, in analogy with a real black hole, and the radiation inside the black hole is composed of negative-energy partner modes only, as predicted.
机译:黑洞(1)和Hawking辐射(2)的熵应具有由表面重力给出的相同温度,在统一顺序的数因子内。此外,Hawking辐射应具有热谱,其产生悖论(3,4)。然而,热量应受灰体因子(5)的限制,至少(6)。已经提出,在模拟系统(7)中可以验证霍基辐射的物理学,这是一项经过精心研究和开发的想法(8-18)。已经通过实验研究了经典的白孔类似物(19-21),并提出了其他类似物系统(22,23)。理论作品和我们对该主题的长期研究(15,24-27)使我们能够在模拟黑洞(28)中观察自发的霍克辐射。观察到的相关谱显示在最低和最高能量和最高能量下的热性,但整体光谱不是热形式,并且没有温度可以归因于它。我们观察的理论研究对热性和霍克宁温度(29-33)进行了预测。在这里,我们与先前的设置相比,构建了一个具有改进的模拟黑洞,例如降低磁场噪声,增强的机械和热稳定性和重新设计的光学器件。我们发现,霍金辐射的相关谱与热谱吻合良好,其温度由表面重力给出,确认了霍金的理论的预测。观察到的Hawking辐射是在线性分散的制度,与真正的黑洞类似,并且黑洞内的辐射仅由预测的负能伴侣模式组成。

著录项

  • 来源
    《Nature》 |2019年第7758期|688-691|共4页
  • 作者单位

    Technion Israel Inst Technol Dept Phys Haifa Israel;

    Technion Israel Inst Technol Dept Phys Haifa Israel;

    Technion Israel Inst Technol Dept Phys Haifa Israel;

    Technion Israel Inst Technol Dept Phys Haifa Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号