首页> 外文期刊>Nature >Observation of thermal Hawking radiation and its temperature in an analogue black hole
【24h】

Observation of thermal Hawking radiation and its temperature in an analogue black hole

机译:在模拟黑洞中观察霍金热辐射及其温度

获取原文
获取原文并翻译 | 示例
           

摘要

The entropy of a black hole(1) and Hawking radiation(2) should have the same temperature given by the surface gravity, within a numerical factor of the order of unity. In addition, Hawking radiation should have a thermal spectrum, which creates an information paradox(3,4). However, the thermality should be limited by greybody factors(5), at the very least(6). It has been proposed that the physics of Hawking radiation could be verified in an analogue system(7), an idea that has been carefully studied and developed theoretically(8-18). Classical white-hole analogues have been investigated experimentally(19-21), and other analogue systems have been presented(22,23). The theoretical works and our long-term study of this subject(15,24-27) enabled us to observe spontaneous Hawking radiation in an analogue black hole(28). The observed correlation spectrum showed thermality at the lowest and highest energies, but the overall spectrum was not of the thermal form, and no temperature could be ascribed to it. Theoretical studies of our observation made predictions about the thermality and Hawking temperature(29-33). Here we construct an analogue black hole with improvements compared with our previous setup, such as reduced magnetic field noise, enhanced mechanical and thermal stability and redesigned optics. We find that the correlation spectrum of Hawking radiation agrees well with a thermal spectrum, and its temperature is given by the surface gravity, confirming the predictions of Hawking's theory. The Hawking radiation observed is in the regime of linear dispersion, in analogy with a real black hole, and the radiation inside the black hole is composed of negative-energy partner modes only, as predicted.
机译:黑洞(1)和霍金辐射(2)的熵应具有由表面重力给定的相同温度,且其数值因子应为1的数量级。此外,霍金辐射应具有热谱,这会引起信息悖论(3,4)。但是,热度至少应受灰体因子(5)的限制(6)。有人提出可以在一个模拟系统中验证霍金辐射的物理性质(7),这一思想已经在理论上经过认真研究和发展(8-18)。对经典的白洞类似物进行了实验研究(19-21),并提出了其他类似物系统(22,23)。通过理论研究和对该主题的长期研究(15,24-27),我们可以观察到类似黑洞中的自发霍金辐射(28)。观察到的相关光谱显示出最低和最高能量下的热度,但是总光谱不是热形式的,并且温度也不能归因于此。我们对观测的理论研究预测了热度和霍金温度(29-33)。在这里,我们构建了一个模拟黑洞,该黑洞与以前的设置相比有所改进,例如减少了磁场噪声,增强了机械和热稳定性并重新设计了光学器件。我们发现霍金辐射的相关谱与热谱非常吻合,其温度由表面引力给出,证实了霍金理论的预测。类似于真实的黑洞,所观察到的霍金辐射处于线性色散范围内,并且如所预测的那样,黑洞内部的辐射仅由负能伙伴模式组成。

著录项

  • 来源
    《Nature》 |2019年第7758期|688-691|共4页
  • 作者单位

    Technion Israel Inst Technol, Dept Phys, Haifa, Israel;

    Technion Israel Inst Technol, Dept Phys, Haifa, Israel;

    Technion Israel Inst Technol, Dept Phys, Haifa, Israel;

    Technion Israel Inst Technol, Dept Phys, Haifa, Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号