首页> 外文期刊>Nature >Direct observation of Anderson localization of matterwaves in a controlled disorder
【24h】

Direct observation of Anderson localization of matterwaves in a controlled disorder

机译:直接观察受控疾病中物质波的安德森定位

获取原文
获取原文并翻译 | 示例
           

摘要

In 1958, Anderson predicted the localization of electronic wave-functions in disordered crystals and the resulting absence of diffusion. It is now recognized that Anderson localization is ubiquitous in wave physics because it originates from the interference between multiple scattering paths. Experimentally, localization has been reported for light waves, microwaves, sound waves and electron gases. However, there has been no direct observation of exponential spatial localization of matter waves of any type. Here we observe exponential localization of a Bose-Einstein condensate released into a one-dimensional waveguide in the presence of a controlled disorder created by laser speckle. We operate in a regime of pure Anderson localization, that is, with weak disorder-such that localization results from many quantum reflections of low amplitude-and an atomic density low enough to render interactions negligible. We directly image the atomic density profiles as a function of time, and find that weak disorder can stop the expansion and lead to the formation of a stationary, exponentially localized wavefunction-a direct signature of Anderson localization. We extract the localization length by fitting the exponential wings of the profiles, and compare it to theoretical calculations. The power spectrum of the one-dimensional speckle potentials has a high spatial frequency cutoff, causing exponential localization to occur only when the de Broglie wavelengths of the atoms in the expanding condensate are greater than an effective mobility edge corresponding to that cutoff. In the opposite case, we find that the density profiles decay algebraically, as predicted in ref. 13. The method presented here can be extended to localization of atomic quantum gases in higher dimensions, and with controlled interactions.
机译:1958年,安德森(Anderson)预测了电子波函数在无序晶体中的定位以及由此导致的无扩散现象。现在已经认识到,安德森定位在波物理学中无处不在,因为它起源于多个散射路径之间的干涉。实验上,已经报道了光波,微波,声波和电子气的定位。然而,还没有直接观察到任何类型的物质波的指数空间定位。在这里,我们观察到在由激光散斑产生的可控无序存在的情况下,释放到一维波导中的玻色-爱因斯坦冷凝物的指数局部化。我们在纯粹的安德森定位系统中工作,即具有弱无序性-这样的定位是由于许多低振幅的量子反射导致的-并且原子密度足够低以至于相互作用可以忽略不计。我们直接将原子密度分布图作为时间的函数进行成像,发现弱无序可以阻止扩展并导致形成固定的,指数局部化的波动函数,这是安德森局部化的直接特征。我们通过拟合轮廓的指数翼来提取定位长度,并将其与理论计算进行比较。一维散斑电位的功率谱具有较高的空间频率截止值,仅在扩展的冷凝物中的原子的德布罗意波长大于对应于该截止值的有​​效迁移率边缘时,才会发生指数局部化。在相反的情况下,我们发现密度分布曲线如参考文献中所预测的那样以代数形式衰减。 13.此处介绍的方法可以扩展为以更高的维度定位原子量子气体并具有受控的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号