首页> 外文期刊>Nature >Resonances arising from hydrodynamic memory in Brownian motion
【24h】

Resonances arising from hydrodynamic memory in Brownian motion

机译:布朗运动中水动力记忆引起的共振

获取原文
获取原文并翻译 | 示例
           

摘要

Observation of the Brownian motion of a small probe interacting with its environment provides one of the main strategies for characterizing soft matter. Essentially, two counteracting forces govern the motion of the Brownian particle. First, the particle is driven by rapid collisions with the surrounding solvent molecules, referred to as thermal noise. Second, the friction between the particle and the viscous solvent damps its motion. Conventionally, the thermal force is assumed to be random and characterized by a Gaussian white noise spectrum. The friction is assumed to be given by the Stokes drag, suggesting that motion is overdamped at long times in particle tracking experiments, when inertia becomes negligible. However, as the particle receives momentum from the fluctuating fluid molecules, it also displaces the fluid in its immediate vicinity. The entrained fluid acts back on the particle and gives rise to long-range correlations. This hydrodynamic 'memory' translates to thermal forces, which have a coloured, that is, non-white, noise spectrum. One hundred years after Perrin's pioneering experiments on Brownian motion, direct experimental observation of this colour is still elusive. Here we measure the spectrum of thermal noise by confining the Brownian fluctuations of a microsphere in a strong optical trap. We show that hydrodynamic correlations result in a resonant peak in the power spectral density of the sphere's positional fluctuations, in strong contrast to overdamped systems. Furthermore, we demonstrate different strategies to achieve peak amplification. By analogy with microcantilever-based sensors, our results reveal that the particle-fluid-trap system can be considered a nanomechanical resonator in which the intrinsic hydro-dynamic backflow enhances resonance. Therefore, instead of being treated as a disturbance, details in thermal noise could be exploited for the development of new types of sensor and particle-based assay in lab-on-a-chip applications.
机译:观察与环境相互作用的小探针的布朗运动提供了表征软物质的主要策略之一。本质上,两个反作用力控制布朗粒子的运动。首先,粒子通过与周围溶剂分子的快速碰撞而被驱动,这称为热噪声。其次,颗粒与粘性溶剂之间的摩擦会减弱其运动。常规上,假定热力是随机的,并以高斯白噪声谱为特征。假定摩擦是由Stokes阻力提供的,这表明在惯性变得可以忽略不计的情况下,长时间的运动在粒子跟踪实验中被过度阻尼。但是,当粒子从波动的流体分子接收动量时,它也会将流体移至紧邻的位置。夹带的流体重新作用在粒子上,并引起远距离相关。这种流体动力的“记忆”转化为热力,热力具有彩色(即非白色)噪声谱。在Perrin进行布朗运动的开创性实验一百年之后,对该颜色的直接实验观察仍然难以捉摸。在这里,我们通过将微球的布朗波动限制在强光阱中来测量热噪声的频谱。我们表明,流体动力学相关性导致球体位置波动的功率谱密度出现共振峰,与过度阻尼的系统形成强烈反差。此外,我们展示了实现峰值放大的不同策略。通过与基于微悬臂梁的传感器进行类比,我们的结果表明,可以将颗粒流体捕集系统视为一种纳米机械谐振器,其中固有的流体动力学回流可增强谐振。因此,可以将热噪声中的细节用于开发新型传感器和芯片实验室应用中的基于粒子的分析方法,而不是将其视为干扰。

著录项

  • 来源
    《Nature》 |2011年第7367期|p.85-88|共4页
  • 作者单位

    Institut fuer Theoretische Physik, Friedrich-Alexander-Universitaet Erlangen-Nurnberg, Staudtstrasse 7, 91058 Erlangen, Germany;

    M. E. Mueller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel 4056, Switzerland Laboratory of Physics of Complex Matter, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;

    Institute of Theoretical Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;

    Laboratory of Physics of Complex Matter, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;

    Institute of Theoretical Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;

    Laboratory of Physics of Complex Matter, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;

    M. E. Mueller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel 4056, Switzerland Laboratory of Physics of Complex Matter, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号