首页> 外文期刊>Nature >Negative capacitance in multidomain ferroelectric superlattices
【24h】

Negative capacitance in multidomain ferroelectric superlattices

机译:多畴铁电超晶格中的负电容

获取原文
获取原文并翻译 | 示例
           

摘要

The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories(1). Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices(2-4). As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative(5), enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors(6). However, experimental demonstrations of this phenomenon remain contentious(7). The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation(8,9), but the effect of domains on negative capacitance has received little attention(5,10-12). Here we report negative capacitance in a model system of multidomain ferroelectric-dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.
机译:铁电中自发极化的稳定性对于它们的许多当前应用至关重要,从简单的电子点烟器到非易失性随机存取存储器(1)。对纳米铁电体的研究表明,它们的行为与块状铁电体的行为有很大的不同,这可能会导致出现新现象,并可能对未来的器件产生影响(2-4)。随着铁电体变得越来越薄,保持稳定的极化变得越来越具有挑战性。另一方面,故意使该极化不稳定会导致铁电体的有效介电常数变为负值(5),从而使其在集成到异质结构中时表现为负电容。提出了负电容作为克服对场效应晶体管功耗的基本限制的方法(6)。但是,对此现象的实验证明仍然存在争议(7)。基于均质极化模型的普遍解释很难与预期的强磁畴形成趋势相一致(8,9),但是磁畴对负电容的影响却很少受到关注(5,10-12)。在这里,我们报告了在铁电和顺电相的宽温度范围内的多域铁电介质超晶格模型系统中的负电容。使用现象学模型,我们表明畴壁运动不仅会引起负介电常数,而且还会提高而不是限制其温度范围。我们基于第一原理的原子模拟为这种现象的起源提供了详细的微观洞察力,从而确定了近界面层的主要贡献,并为今后的应用铺平了道路。

著录项

  • 来源
    《Nature》 |2016年第7608期|524-528|共5页
  • 作者单位

    UCL, London Ctr Nanotechnol, 17-19 Gordon St, London WC1H 0HA, England|UCL, Dept Phys & Astron, 17-19 Gordon St, London WC1H 0HA, England;

    Inst Ciencia Mat Barcelona ICMAB CSIC, Campus UAB, Bellaterra 08193, Spain;

    UCL, London Ctr Nanotechnol, 17-19 Gordon St, London WC1H 0HA, England|UCL, Dept Phys & Astron, 17-19 Gordon St, London WC1H 0HA, England;

    Univ Geneva, Dept Quantum Matter Phys, CH-1211 Geneva, Switzerland;

    Univ Picardie, Lab Condensed Matter Phys, F-80000 Amiens, France;

    Univ Picardie, Lab Condensed Matter Phys, F-80000 Amiens, France|LD Landau Theoret Phys Inst, Moscow, Russia;

    Univ Geneva, Dept Quantum Matter Phys, CH-1211 Geneva, Switzerland;

    Inst Ciencia Mat Barcelona ICMAB CSIC, Campus UAB, Bellaterra 08193, Spain|LIST, Mat Res & Technol Dept, 5 Ave Hauts Fourneaux, L-4362 Esch Sur Alzette, Luxembourg;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号