首页> 外文期刊>Nature >Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction
【24h】

Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction

机译:通过破坏激活剂-介体相互作用抑制真菌多药耐药性

获取原文
获取原文并翻译 | 示例
       

摘要

Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex(1,2). Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi(3,4). The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata(5,6). The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent(7,8). Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active(9-14), suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a transcription factor-binding site in Mediator as a novel therapeutic strategy in fungal infectious disease.
机译:真核转录激活因子通过募集诸如RNA聚合酶II相互作用介体复合物(1,2)等共激活因子来刺激特定目标基因的表达。转录激活子的异常功能与几种疾病有关。然而,由于缺乏与疾病相关的转录激活因子激活基因的机制的详细分子知识,阻碍了治疗靶向的努力。我们先前在人类MED15介体亚基中鉴定了一种激活剂靶向的三螺旋束KIX域,该结构在真菌(3,4)的Gal11 / Med15介体亚基中结构保守。 Gal11 / Med15 KIX结构域参与多效性药物抗性转录因子(Pdr1)直向同源物,这是酿酒酵母和临床上重要的人类病原体光滑念珠菌(Candida glabrata)多药耐药途径的关键调节剂(5,6)。光滑念珠菌的流行正在上升,部分原因是其对使用最广泛的抗真菌剂唑的固有敏感性低(7,8)。耐药的光滑念珠菌临床分离株通常在Pdr1中包含点突变,使其具有组成性活性(9-14),这表明该转录激活途径代表了光滑念珠菌多药耐药性的关键。在这里,我们进行顺序的生化和体内高通量筛选,以鉴定小毛霉菌P. glabrata Pdr1激活域与小毛虫Gal11A KIX域相互作用的抑制剂。铅化合物(iKIX1)抑制Pdr1依赖的基因激活,并在体外和在传播和尿路光滑小球藻感染的动物模型中使耐药性光滑小球藻对唑类抗真菌剂重新敏感。确定光滑念珠菌Gal11A KIX域的NMR结构可提供对Pdr1基因激活和iKIX1抑制多药耐药性的分子机制的详细了解。我们已经证明了在介体中小分子靶向转录因子结合位点作为真菌感染性疾病的新型治疗策略的可行性。

著录项

  • 来源
    《Nature》 |2016年第7591期|485-489|共5页
  • 作者单位

    Massachusetts Gen Hosp, Ctr Canc, Charlestown, MA 02129 USA|Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA;

    Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA;

    Univ Lausanne Hosp, Inst Microbiol, CH-1011 Lausanne, Switzerland|Univ Hosp Ctr, CH-1011 Lausanne, Switzerland;

    Univ Cattolica Sacro Cuore, Inst Microbiol, I-00168 Rome, Italy;

    Univ Cattolica Sacro Cuore, Inst Publ Hlth, I-00168 Rome, Italy;

    Massachusetts Gen Hosp, Ctr Canc, Charlestown, MA 02129 USA|Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA;

    Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA 02114 USA|Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA;

    Univ Sofia, Fac Chem & Pharm, Sofia 1164, Bulgaria;

    Univ Lausanne Hosp, Inst Microbiol, CH-1011 Lausanne, Switzerland|Univ Hosp Ctr, CH-1011 Lausanne, Switzerland;

    Univ Cattolica Sacro Cuore, Inst Microbiol, I-00168 Rome, Italy;

    Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA 02114 USA|Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA|Harvard Univ, Sch Med, Boston, MA 02114 USA;

    Indian Inst Technol Delhi, Dept Chem, New Delhi 110016, India|Indian Inst Technol Delhi, Supercomp Facil Bioinformat & Computat Biol, New Delhi 110016, India;

    Indian Inst Technol Delhi, Dept Chem, New Delhi 110016, India|Indian Inst Technol Delhi, Supercomp Facil Bioinformat & Computat Biol, New Delhi 110016, India|Indian Inst Technol Delhi, Kusuma Sch Biol Sci, New Delhi 110016, India;

    Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA|Dana Farber Canc Inst, Boston, MA 02115 USA;

    Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA|Dana Farber Canc Inst, Boston, MA 02115 USA;

    Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA;

    Massachusetts Gen Hosp, Ctr Canc, Charlestown, MA 02129 USA|Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA;

    Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号