首页> 外文期刊>Nature >An extracellular network of Arabidopsis leucine-rich repeat receptor kinases
【24h】

An extracellular network of Arabidopsis leucine-rich repeat receptor kinases

机译:拟南芥富含亮氨酸的重复受体激酶的细胞外网络

获取原文
获取原文并翻译 | 示例
           

摘要

The cells of multicellular organisms receive extracellular signals using surface receptors. The extracellular domains (ECDs) of cell surface receptors function as interaction platforms, and as regulatory modules of receptor activation(1,2). Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability(3,4). In plants, the discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions(5). The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily related leucine-rich repeat receptor kinases (LRR-RKs)(5), which function in the sensing of microorganisms, cell expansion, stomata development and stem-cell maintenance(6-9). Although the principles that govern LRR-RK signalling activation are emerging(1,10), the systems-level organization of this family of proteins is unknown. Here, to address this, we investigated 40,000 potential ECD interactions using a sensitized high-throughput interaction assay(3), and produced an LRR-based cell surface interaction network (CSILRR) that consists of 567 interactions. To demonstrate the power of CSILRR for detecting biologically relevant interactions, we predicted and validated the functions of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSILRR operates as a unified regulatory network in which the LRR-RKs most crucial for its overall structure are required to prevent the aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.
机译:多细胞生物的细胞使用表面受体接收细胞外信号。细胞表面受体的细胞外结构域(ECD)充当相互作用平台和受体激活的调节模块(1,2)。由于其生化易处理性低,因此了解ECD之间的相互作用如何产生具有信号功能的受体复合物具有挑战性(3,4)。在植物中,ECD相互作用的发现因受体家族的大量扩展而变得复杂,这为受体相互作用的转换创造了巨大潜力(5)。拟南芥中这些家族中的最大家族由225种进化相关的富含亮氨酸的重复受体激酶(LRR-RKs)(5)组成,它们在检测微生物,细胞扩增,气孔发育和干细胞维持方面发挥作用(6-9)。 )。尽管支配LRR-RK信号激活的原理正在出现(1,10),但该蛋白家族的系统级组织尚不清楚。在这里,为了解决这个问题,我们使用敏化的高通量相互作用测定法研究了40,000种潜在的ECD相互作用(3),并产生了一个基于LRR的细胞表面相互作用网络(CSILRR),该网络由567个相互作用组成。为了证明CSILRR在检测生物学相关相互作用中的功能,我们预测并验证了未表征的LRR-RK在植物生长和免疫中的功能。此外,我们表明CSILRR作为一个统一的监管网络运行,其中需要对其整体结构最关键的LRR-RK,以防止距离网络仅几步之遥的受体的异常信号传导。因此,植物已经进化出LRR-RK网络,以将细胞外信号处理为精心平衡的响应。

著录项

  • 来源
    《Nature》 |2018年第7688期|342-346|共5页
  • 作者单位

    Austrian Acad Sci, Vienna Bioctr VBC, GMI, Dr Bohr Gasse 3, A-1030 Vienna, Austria;

    Univ Toronto, Dept Cell & Syst Biol, 25 Willcocks St, Toronto, ON, Canada;

    Austrian Acad Sci, Vienna Bioctr VBC, GMI, Dr Bohr Gasse 3, A-1030 Vienna, Austria;

    Sainsbury Lab, Norwich Res Pk, Norwich NR4 7UH, Norfolk, England;

    Univ Alabama Birmingham, Dept Biol, Birmingham, AL 35294 USA;

    Univ Toronto, Dept Cell & Syst Biol, 25 Willcocks St, Toronto, ON, Canada;

    VBCF, Prot Technol Facil, Vienna, Austria;

    VBCF, Prot Technol Facil, Vienna, Austria;

    Austrian Acad Sci, Vienna Bioctr VBC, GMI, Dr Bohr Gasse 3, A-1030 Vienna, Austria;

    Austrian Acad Sci, Vienna Bioctr VBC, GMI, Dr Bohr Gasse 3, A-1030 Vienna, Austria;

    Austrian Acad Sci, Vienna Bioctr VBC, GMI, Dr Bohr Gasse 3, A-1030 Vienna, Austria;

    Austrian Acad Sci, Vienna Bioctr VBC, GMI, Dr Bohr Gasse 3, A-1030 Vienna, Austria|Salk Inst Biol Studies, Plant Mol & Cellular Biol Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA;

    Austrian Acad Sci, Vienna Bioctr VBC, GMI, Dr Bohr Gasse 3, A-1030 Vienna, Austria|Vienna Bioctr VBC, Res Inst Mol Pathol IMP, Campus Vienna Bioctr 1, A-1030 Vienna, Austria|Inst Mol Biotechnol GmbH IMBA, Vienna Bioctr VBC, Dr Bohr Gasse 3, A-1030 Vienna, Austria;

    Austrian Acad Sci, Vienna Bioctr VBC, GMI, Dr Bohr Gasse 3, A-1030 Vienna, Austria|Salk Inst Biol Studies, Plant Mol & Cellular Biol Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA;

    Austrian Acad Sci, Vienna Bioctr VBC, GMI, Dr Bohr Gasse 3, A-1030 Vienna, Austria|Vienna Bioctr VBC, Res Inst Mol Pathol IMP, Campus Vienna Bioctr 1, A-1030 Vienna, Austria|Inst Mol Biotechnol GmbH IMBA, Vienna Bioctr VBC, Dr Bohr Gasse 3, A-1030 Vienna, Austria;

    VBCF, Prot Technol Facil, Vienna, Austria;

    Univ Toronto, Dept Cell & Syst Biol, 25 Willcocks St, Toronto, ON, Canada|Univ Toronto, Ctr Anal Genome Evolut & Funct, 25 Willcocks St, Toronto, ON, Canada;

    Univ Alabama Birmingham, Dept Biol, Birmingham, AL 35294 USA;

    Sainsbury Lab, Norwich Res Pk, Norwich NR4 7UH, Norfolk, England;

    Univ Toronto, Dept Cell & Syst Biol, 25 Willcocks St, Toronto, ON, Canada|Univ Toronto, Ctr Anal Genome Evolut & Funct, 25 Willcocks St, Toronto, ON, Canada;

    Univ Toronto, Dept Cell & Syst Biol, 25 Willcocks St, Toronto, ON, Canada|Univ Toronto, Ctr Anal Genome Evolut & Funct, 25 Willcocks St, Toronto, ON, Canada;

    Austrian Acad Sci, Vienna Bioctr VBC, GMI, Dr Bohr Gasse 3, A-1030 Vienna, Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号