...
首页> 外文期刊>Microsystem Technologies >A micro electromagnetic low level vibration energy harvester based on MEMS technology
【24h】

A micro electromagnetic low level vibration energy harvester based on MEMS technology

机译:基于MEMS技术的微电磁低级振动能量采集器

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a micro electromagnetic energy harvester which can convert low level vibration energy to electrical power. It mainly consists of an electroplated copper planar spring, a permanent magnet and a copper planar coil with high aspect ratio. Mechanical simulation shows that the natural frequency of the magnet-spring system is 94.5 Hz. The resonant vibration amplitude of the magnet is 259.1 μm when the input vibration amplitude is 14 μm and the magnet-spring system is at resonance. Electromagnetic simulation shows that the linewidth and the turns of the coil influence the induced voltage greatly. The optimized electromagnetic vibration energy harvester can generate 0.7 μW of maximal output power with peak–peak voltage of 42.6 mV in an input vibration frequency of 94.5 Hz and input acceleration of 4.94 m/s2 (this vibration is a kind of low level ambient vibration). A prototype (not optimized) has been fabricated using MEMS micromachining technology. The testing results show that the prototype can generate induced voltage (peak–peak) of 18 mV and output power of 0.61 μW for 14.9 m/s2 external acceleration at its resonant frequency of 55 Hz (this vibration is not in a low ambient vibration level).
机译:本文提出了一种微型电磁能量收集器,它可以将低水平的振动能量转换为电能。它主要由电镀的铜平面弹簧,永磁体和高纵横比的铜平面线圈组成。机械仿真表明,磁弹簧系统的固有频率为94.5 Hz。当输入振动幅度为14μm且磁体弹簧系统处于共振状态时,磁体的共振振动幅度为259.1μm。电磁仿真表明,线宽和线圈匝数对感应电压有很大影响。经过优化的电磁振动能量采集器在94.5 Hz的输入振动频率和4.94 m / s2的输入加速度下可以产生0.7μW的最大输出功率,峰值-峰值电压为42.6 mV (这种振动是一种低水平的环境振动)。已使用MEMS微加工技术制造了原型(未优化)。测试结果表明,在55 Hz的共振频率下,该样机在14.9 m / s2的外部加速度下可以产生18 mV的感应电压(峰-峰值)和0.61μW的输出功率。低的环境振动水平)。

著录项

  • 来源
    《Microsystem Technologies》 |2009年第6期|941-951|共11页
  • 作者单位

    Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education National Key Laboratory of Nano/Micro Fabrication Technology Research Institute of Micro/Nanometer Science and Technology Shanghai Jiaotong University 200240 Shanghai China;

    Research Organization of Science and Engineering Ritsumeikan University Kusatsu 525-8577 Japan;

    Research Institute for Nanomachine System Technology Ritsumeikan University Kusatsu 525-8577 Japan;

    Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education National Key Laboratory of Nano/Micro Fabrication Technology Research Institute of Micro/Nanometer Science and Technology Shanghai Jiaotong University 200240 Shanghai China;

    Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education National Key Laboratory of Nano/Micro Fabrication Technology Research Institute of Micro/Nanometer Science and Technology Shanghai Jiaotong University 200240 Shanghai China;

    Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education National Key Laboratory of Nano/Micro Fabrication Technology Research Institute of Micro/Nanometer Science and Technology Shanghai Jiaotong University 200240 Shanghai China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号