...
首页> 外文期刊>Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structure >Capped carbon hard mask and trimming process: A low-cost and efficient route to nanoscale devices
【24h】

Capped carbon hard mask and trimming process: A low-cost and efficient route to nanoscale devices

机译:加盖的碳硬掩模和修整工艺:低成本,高效的纳米尺度设备路线

获取原文
获取原文并翻译 | 示例
           

摘要

Both sub-22nm architecture design optimization and reliable, low-cost process development represent major challenges toward nanoscale device fabrication. In order to address the second of these two issues, the authors have demonstrated that it is possible to overcome current tool and process lithography limitations using a capped carbon hard mask process, without dramatically increasing device fabrication costs, as only existing tools are used in this process. Starting from 50 nm patterns, 25 nm fully depleted silicon-on-insulator (FDSOI) transistors with good reliability and acceptable electrical behavior are obtained. This patterning solution may be applied to existing lithography processes (dry or immersion ArF lithography) in order to enhance current resolution capabilities. Moreover, the use of a capping layer enables to set free from photoresist thickness limitations, which are becoming increasingly critical for sub-22nm feature patterning. Indeed, for such dimensions, photoresist thickness generally needs to be lower than 66 nm in order to avoid pattern collapse effects. This trend can lead to serious integration problems especially for the fabrication of thick stack device architectures. Therefore, in addition to improving current lithography processes, our strategy may also be useful for novel lithography processes such as extreme ultraviolet lithography or maskless lithography. The authors have also demonstrated that the capped carbon hard mask process could enable the patterning of sub-11 nm FDSOI gates, with a current best result close to 7nm, starting from 30 nm photoresist patterns. Note that all etching steps of the process have been performed in the same etching chamber, which is a key point for meeting industrial requirements. These results show that it is possible to bypass tool and process lithography limitations to pattern sub-22nm devices without dramatically increasing fabrication costs while maintaining lithography throughput. The authors have therefore shown that the capped carbon hard mask process could be a high-performance and low-cost industry-compatible solution for nanoscale device fabrication.
机译:22纳米以下的体系结构设计优化和可靠,低成本的工艺开发都对纳米级器件制造提出了重大挑战。为了解决这两个问题中的第二个问题,作者证明了可以使用碳封盖硬掩模工艺来克服当前的工具和工艺光刻限制,而不会显着增加器件制造成本,因为在此过程中仅使用现有的工具。处理。从50 nm图案开始,可以获得具有良好可靠性和可接受的电性能的25 nm完全耗尽型绝缘体上硅(FDSOI)晶体管。该图案化解决方案可以应用于现有的光刻工艺(干法或浸没式ArF光刻),以增强电流分辨率。此外,使用覆盖层能够摆脱光致抗蚀剂厚度限制,这对于22纳米以下的特征图案形成越来越关键。实际上,对于这样的尺寸,光致抗蚀剂的厚度通常需要小于66nm,以避免图案塌陷效应。这种趋势会导致严重的集成问题,特别是对于厚堆栈器件架构的制造。因此,除了改善当前的光刻工艺外,我们的策略还可能对新型光刻工艺(例如极紫外光刻或无掩模光刻)有用。作者还证明,采用封盖的碳硬掩模工艺可以对低于11 nm的FDSOI栅极进行构图,从30 nm的光刻胶图形开始,目前的最佳结果接近7 nm。注意,该工艺的所有蚀刻步骤均在同一蚀刻室中进行,这是满足工业要求的关键。这些结果表明,有可能绕过工具和工艺的光刻限制,以图案化22纳米以下的器件,而不会显着增加制造成本,同时又保持了光刻吞吐量。作者因此表明,封盖的碳硬掩模工艺可能是用于纳米级器件制造的高性能且低成本的行业兼容解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号