首页> 外文学位 >Routes to Improved Light Harvesting in Thin Film Photoelectrochemical Devices: Examining Nanoscale Light Absorbers at the Metal Oxide Interface.
【24h】

Routes to Improved Light Harvesting in Thin Film Photoelectrochemical Devices: Examining Nanoscale Light Absorbers at the Metal Oxide Interface.

机译:改善薄膜光电化学设备中光收集的途径:检查金属氧化物界面处的纳米级吸光剂。

获取原文
获取原文并翻译 | 示例

摘要

The continuous increase in energy demand is forcing our society to search for environmentally clean and sustainable energy sources, of which solar energy is of prominent interest. Efficient conversion of sunlight to electricity and storable fuels is a compelling challenge for modern science. Dye-sensitized solar cells (DSSCs) have received considerable attention as a cost-effective technology for light-to-electrical energy conversion. Improvements in device efficiency, however, are necessary in order to realize widespread implementation.;One pathway toward improved efficiency is photocurrent enhancement through increased light harvesting. The incorporation of silver nanoparticles (Ag NPs) into planar, DSSC photoelectrodes has afforded enhanced performance through amplification of light absorption of the dye sensitizer through localized surface plasmon resonance (LSPR). To explore the fundamental properties of this architecture, various metal oxide thin films, grown by atomic layer deposition (ALD), were employed to investigate the influence of dielectric environment on photocurrent enhancement in DSSCs containing Ag NPs supporting LSPR.;The same planar architecture was used to evaluate plasmonic enhancement of cadmium selenide (CdSe) quantum dots (QDs), which exhibit superior light absorption relative to dye molecules. The enhancement effect was observed to sustain the exciton lifetimes in QDs and to strongly depend on the incident photon wavelength following the plasmon resonant strength of Ag NPs, confirming that the enhanced photoluminescence was mainly due to the enhancement in photon absorption (light harvesting) in CdSe QDs by the plasmon of Ag NPs. The calculated fluorescence enhancement factors suggest that a unique combination of nanostructured metal and quantum-confined semiconductors are a promising route to increasing light harvesting in photoelectrochemical (PEC) devices.;The conversion of sunlight to hydrogen by means of photocatalysis is one of the most interesting ways to achieve storable, renewable energy. In order to potentially address stability issues involving hole corrosion of CdSe in PEC devices, ultrathin hole-conducting NiO films made by ALD were characterized using the oxygen evolution reaction and investigated as a prospective hole scavenger in semiconductor-semiconductor photocatalytic systems for the reduction of water. The effect of the surface linker structure on hole transfer times from the QD to NiO was examined using time-resolved fluorescence spectroscopy.
机译:能源需求的持续增长迫使我们的社会寻找环境清洁和可持续的能源,其中太阳能是人们关注的焦点。将太阳光有效转化为电能和可存储的燃料是现代科学面临的一项迫切挑战。染料敏化太阳能电池(DSSC)作为一种光能转化为电能的经济有效技术而受到了广泛关注。然而,为了实现广泛的实现,必须提高设备效率。改善效率的一种途径是通过增加光收集来增强光电流。将银纳米颗粒(Ag NPs)掺入平面的DSSC光电极通过通过局部表面等离子体共振(LSPR)放大染料敏化剂的光吸收提供了增强的性能。为了探索这种结构的基本特性,采用原子层沉积(ALD)生长的各种金属氧化物薄膜来研究介电环境对含有支持LSPR的Ag NP的DSSC中光电流增强的影响。用于评估硒化镉(CdSe)量子点(QDs)的等离子体增强,相对于染料分子,量子点具有更好的光吸收性能。观察到增强效应可以维持量子点中的激子寿命,并且强烈依赖于Ag NP的等离子体激元共振强度后的入射光子波长,从而证实增强的光致发光主要归因于CdSe中光子吸收(光收集)的增强。 Ag NPs的等离激元进行QD。计算得出的荧光增强因子表明,纳米结构金属和量子受限半导体的独特组合是增加光电化学(PEC)装置中光收集的有前途的途径。;通过光催化将太阳光转化为氢是最有趣的方法之一实现可存储的可再生能源的方法。为了潜在地解决涉及PEC器件中CdSe的空穴腐蚀的稳定性问题,利用氧气析出反应对ALD制得的超薄空穴传导NiO膜进行了表征,并将其用作半导体-半导体光催化体系中减少水份的潜在空穴清除剂。 。使用时间分辨荧光光谱法检查了表面连接结构对从QD到NiO的空穴传输时间的影响。

著录项

  • 作者

    DeMarco, Erica Jane.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry General.;Chemistry Inorganic.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号