首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Intergranular strain evolution near fatigue crack tips in polycrystalline metals
【24h】

Intergranular strain evolution near fatigue crack tips in polycrystalline metals

机译:多晶金属疲劳裂纹尖端附近的晶间应变演化

获取原文
获取原文并翻译 | 示例
           

摘要

The deformation field near a steady fatigue crack includes a plastic zone in front of the crack tip and a plastic wake behind it, and the magnitude, distribution, and history of the residual strain along the crack path depend on the stress multiaxiality, material properties, and history of stress intensity factor and crack growth rate. An in situ, full-field, non-destructive measurement of lattice strain (which relies on the intergranular interactions of the inhomogeneous deformation fields in neighboring grains) by neutron diffraction techniques has been performed for the fatigue test of a Ni-based superalloy compact tension specimen. These microscopic grain level measurements provided unprecedented information on the fatigue growth mechanisms. A two-scale model is developed to predict the lattice strain evolution near fatigue crack tips in polycrystalline materials. An irreversible, hysteretic cohesive interface model is adopted to simulate a steady fatigue crack, which allows us to generate the stress/strain distribution and history near the fatigue crack tip. The continuum deformation history is used as inputs for the micromechanical analysis of lattice strain evolution using the slip-based crystal plasticity model, thus making a mechanistic connection between macro- and micro-strains. Predictions from perfect grain-boundary simulations exhibit the same lattice strain distributions as in neutron diffraction measurements, except for discrepancies near the crack tip within about one-tenth of the plastic zone size. By considering the intergranular damage, which leads to vanishing intergranular strains as damage proceeds, we find a significantly improved agreement between predicted and measured lattice strains inside the fatigue process zone. Consequently, the intergranular damage near fatigue crack tip is concluded to be responsible for fatigue crack growth.
机译:稳定疲劳裂纹附近的形变场包括裂纹尖端前方的塑性区和裂纹尖端后方的塑性尾流,沿裂纹路径的残余应变的大小,分布和历史取决于应力多轴性,材料特性,应力强度因子和裂纹扩展速率的历史。已经通过中子衍射技术对晶格应变进行了原位,全场,无损测量(依赖于相邻晶粒中不均匀形变场的晶间相互作用),用于镍基高温合金致密拉伸的疲劳测试。样品。这些微观晶粒度测量结果提供了有关疲劳增长机理的空前信息。建立了一个两尺度模型来预测多晶材料中疲劳裂纹尖端附近的晶格应变演化。采用不可逆的滞后内聚界面模型来模拟稳定的疲劳裂纹,这使我们能够在疲劳裂纹尖端附近生成应力/应变分布和历史。连续变形历史被用作使用基于滑移的晶体塑性模型对晶格应变演化进行微力学分析的输入,从而在宏观和微观应变之间建立了机械联系。完美晶界模拟的预测显示出与中子衍射测量相同的晶格应变分布,除了裂纹尖端附近塑性区大小的十分之一以内的差异。通过考虑晶间损伤,随着损伤的进行,晶间损伤会逐渐消失,我们发现疲劳过程区内的预测晶格应变和实测晶格应变之间的一致性得到了显着改善。因此,可以得出结论,疲劳裂纹尖端附近的晶间损伤是造成疲劳裂纹扩展的原因。

著录项

  • 来源
    《Journal of the Mechanics and Physics of Solids》 |2011年第11期|p.2307-2322|共16页
  • 作者单位

    Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA;

    Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA;

    Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA,Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA;

    Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    lattice and intergranular strains; fatigue crack; irreversible hysteretic cohesive interface; model; neutron diffraction; intergranular damage;

    机译:晶格和晶间应变;疲劳裂纹不可逆的滞后粘性界面;模型;中子衍射晶间损伤;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号