首页> 外文期刊>Journal of the American Chemical Society >Fabricating Covalent Organic Framework Capsules with Commodious Microenvironment for Enzymes
【24h】

Fabricating Covalent Organic Framework Capsules with Commodious Microenvironment for Enzymes

机译:制备具有酶微环境的共价有机骨架胶囊

获取原文
获取原文并翻译 | 示例
           

摘要

Enzyme immobilization has been demonstrated to be a favorable protocol to promote industrialization of biomacromolecules. Despite tremendous efforts to develop new strategies and materials to realize this process, maintaining enzyme activity is still a formidable challenge. Herein we created a sacrificial templating method, using metal-organic frameworks (MOFs) as sacrificial templates to construct hollow covalent organic framework (COF) capsules for enzyme encapsulation. This strategy can provide a capacious microenvironment to unleash enzyme molecules. The improved conformational freedom of enzymes, enhanced mass transfer, and protective effect against the external environment ultimately boosted the enzymatic activities. We also found that this strategy possesses high versatility that is suitable for diverse biomacromolecules, MOF templates, and COF capsules. Moreover, the dimensions, pore sizes, and shell thickness of COF capsules can be conveniently tuned, allowing for customizing bioreactors for specific functions. For example, coencapsulation of different enzymes with synergistic functions were successfully demonstrated using this bioreactor platform. This study not only opens up a new avenue to overcome the present limitations of enzymatic immobilization in porous matrixes but also provides new opportunities for construction of biomicrodevices or artificial organelles based on crystalline porous materials.
机译:酶固定化已被证明是促进生物大分子工业化的有利方案。尽管为开发新的策略和材料以实现这一过程付出了巨大的努力,但保持酶活性仍然是一个巨大的挑战。在这里,我们创建了一种牺牲模板方法,使用金属有机框架(MOF)作为牺牲模板来构建用于酶包封的中空共价有机框架(COF)胶囊。该策略可以提供释放酶分子的宽敞微环境。酶构象自由度的提高,传质的增强以及对外界环境的保护作用最终增强了酶的活性。我们还发现,该策略具有很高的通用性,适用于各种生物大分子,MOF模板和COF胶囊。此外,可以方便地调整COF胶囊的尺寸,孔径和外壳厚度,从而可以针对特定功能定制生物反应器。例如,使用该生物反应器平台成功地证明了具有协同功能的不同酶的共包封。这项研究不仅为克服目前酶固定在多孔基质中的局限性开辟了一条新途径,而且为基于晶体多孔材料的生物微装置或人工细胞器的构建提供了新的机会。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第14期|6675-6681|共7页
  • 作者单位

    State Key Laboratory of Medicinal Chemical biology College of Pharmacy Nankai University Tianjin 300071 China;

    Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland;

    Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland College of Chemistry Nankai University Tianjin 300071 China;

    College of Chemistry Nankai University Tianjin 300071 China;

    Department of Chemistry University of South Florida Florida 33620 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号