首页> 外文期刊>Journal of the American Chemical Society >A DNA Origami Platform for Single-Pair Foerster Resonance Energy Transfer Investigation of DNA-DNA Interactions and Ligation
【24h】

A DNA Origami Platform for Single-Pair Foerster Resonance Energy Transfer Investigation of DNA-DNA Interactions and Ligation

机译:DNA折纸平台的单对福斯特共振能量转移研究DNA-DNA相互作用和连接。

获取原文
获取原文并翻译 | 示例
           

摘要

DNA double-strand breaks (DSBs) pose an everyday threat to the conservation of genetic information and therefore life itself. Several pathways have evolved to repair these cytotoxic lesions by rejoining broken ends, among them the nonhomologous end-joining mechanism that utilizes a DNA ligase. Here, we use a custom-designed DNA origami nanostructure as a model system to specifically mimic a DNA DSB, enabling us to study the end-joining of two fluorescently labeled DNA with the T4 DNA ligase on the single-molecule level. The ligation reaction is monitored by Forster resonance energy transfer (FRET) experiments both in solution and on surface-anchored origamis. Due to the modularity of DNA nanotechnology, DNA double strands with different complementary overhang lengths can be studied using the same DNA origami design. We show that the T4 DNA ligase repairs sticky ends more efficiently than blunt ends and that the ligation efficiency is influenced by both DNA sequence and the incubation conditions. Before ligation, dynamic fluctuations of the FRET signal are observed due to transient binding of the sticky overhangs. After ligation, the FRET signal becomes static. Thus, we can directly monitor the ligation reaction through the transition from dynamic to static FRET signals. Finally, we revert the ligation process using a restriction enzyme digestion and religate the resulting blunt ends. The here-presented DNA origami platform is thus suited to study complex multistep reactions occurring over several cycles of enzymatic treatment.
机译:DNA双链断裂(DSB)每天都在威胁着遗传信息的保存,从而对生命本身构成威胁。通过重新连接断裂的末端,已经发展了几种途径来修复这些细胞毒性损伤,其中包括利用DNA连接酶的非同源末端连接机制。在这里,我们使用定制设计的DNA折纸纳米结构作为模型系统来专门模拟DNA DSB,从而使我们能够在单分子水平上研究两个荧光标记的DNA与T4 DNA连接酶的末端连接。在溶液中和在表面锚定的牛至上均通过Forster共振能量转移(FRET)实验来监测连接反应。由于DNA纳米技术的模块化,可以使用相同的DNA折纸设计研究具有不同互补突出端长度的DNA双链。我们表明,T4 DNA连接酶比平端更有效地修复粘性末端,并且连接效率受DNA序列和孵育条件的影响。在结扎之前,由于粘性突出端的瞬时结合,观察到FRET信号的动态波动。结扎后,FRET信号变为静态。因此,我们可以通过从动态FRET信号转换为静态FRET信号来直接监控连接反应。最后,我们使用限制酶消化还原了连接过程,并重新连接了产生的平末端。因此,本文介绍的DNA折纸平台适用于研究在多个酶处理周期中发生的复杂的多步反应。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第2期|815-825|共11页
  • 作者单位

    Department of Chemistry Center for Nanoscience (CeNS) Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) Ludwig-Maximilians-Universitaet Muenchen 81377 Munich Germany;

    Department of Physics and Center for Nanoscience (CeNS) Ludwig-Maximilians-Universitaet 80539 Munich Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号