首页> 外文期刊>Journal of the American Chemical Society >Theoretical Study of the Cp_2Zr-Catalyzed Hydrosilylation of Ethylene. Reaction Mechanism Including New σ-Bond Activation
【24h】

Theoretical Study of the Cp_2Zr-Catalyzed Hydrosilylation of Ethylene. Reaction Mechanism Including New σ-Bond Activation

机译:Cp_2Zr催化乙烯氢化硅烷化反应的理论研究。包括新的σ键活化在内的反应机理

获取原文
获取原文并翻译 | 示例
           

摘要

The Cp_2Zr-catalyzed hydrosilylation of ethylene was theoretically investigated with DFT and MP2-MP4(SDQ) methods, to clarify the reaction mechanism and the characteristic features of this reaction. Although ethylene insertion into the Zr-SiH_3 bond of Cp_2Zr(H)(SiH_3) needs a very large activation barrier of 41.0 (42.3) kcal/mol, ethylene is easily inserted into the Zr-H bond with a very small activation barrier of 2.1 (2.8) kcal/mol, where the activation barrier and the energy of reaction calculated with the DFT(B3LYP) method are given and in parentheses are those values which have been corrected for the zero-point energy, hereafter. Not only this ethylene insertion reaction but also the coupling reaction between Cp_2Zr(C_2H_4) and SiH_4 easily takes place to afford Cp_2Zr(H)(CH_2CH_2SiH_3) and Cp_2Zr(CH_2CH_3)(SiH_3) with activation barriers of 0.3 (0.7) and 5.0 (5.4) kcal/mol, respectively. This coupling reaction involves a new type of Si-H -bond activation which is similar to metathesis. The important interaction in the coupling reaction is the bonding overlap between the d_π-π~* bonding orbital of Cp_2Zr(C_2H_4) and the Si-H σ~* orbital. The final step is neither direct C-H nor Si-C reductive elimination, because both reductive eliminations occur with a very large activation barrier and significantly large endothermicity. This is because the d orbital of Cp_2Zr is at a high energy. On the other hand, ethylene-assisted C-H reductive elimination easily occurs with a small activation barrier, 5.0 (7.5) kcal/mol, and considerably large exothermicity, -10.6 (-7.1) kcal/mol. Also, ethylene-assisted Si-C reductive elimination and metatheses of Cp_2Zr(H)(CH_2CH_2SiH_3) and Cp_2Zr(CH_2CH_3)(SiH_3) with SiH4 take place with moderate activation barriers, 26.5 (30.7), 18.4 (20.5), and 28.3 (31.5) kcal/mol, respectively. From these results, it is clearly concluded that the most favorable catalytic cycle of the Cp_2Zr-catalyzed hydrosilylation of ethylene consists of the coupling reaction of Cp_2Zr(C_2H_4) with SiH4 followed by the ethylene-assisted C-H reductive elimination.
机译:理论上用DFT和MP2-MP4(SDQ)方法研究了Cp_2Zr催化的乙烯的硅氢加成反应,以阐明该反应的反应机理和特征。尽管将乙烯插入Cp_2Zr(H)(SiH_3)的Zr-SiH_3键中需要41.0(42.3)kcal / mol的非常大的激活势垒,但乙烯很容易以2.1很小的激活势垒插入Zr-H键中(2.8)kcal / mol,其中给出了用DFT(B3LYP)方法计算出的活化能垒和反应能,括号中是经过零点能量校正的值。不仅容易发生这种乙烯插入反应,而且Cp_2Zr(C_2H_4)与SiH_4之间的偶联反应也很容易发生,从而得到Cp_2Zr(H)(CH_2CH_2SiH_3)和Cp_2Zr(CH_2CH_3)(SiH_3),其活化能垒为0.3(0.7)和5.0(5.4) )kcal / mol。该偶联反应涉及一种类似于复分解的新型Si-H键活化。偶联反应中的重要相互作用是Cp_2Zr(C_2H_4)的d_π-π〜*键轨道与Si-Hσ〜*轨道之间的键重叠。最后的步骤既不是直接的C-H还原反应,也不是Si-C的还原还原反应,因为这两个还原消除反应都具有非常大的活化势垒和相当大的吸热性。这是因为Cp_2Zr的d轨道处于高能量。另一方面,容易以5.0(7.5)kcal / mol的较小的活化势垒和-10.6(-7.1)kcal / mol的相当大的放热来轻松进行乙烯辅助的C-H还原消除。另外,乙烯辅助的Si-C还原消除和Cp_2Zr(H)(CH_2CH_2SiH_3)和Cp_2Zr(CH_2CH_3)(SiH_3)与SiH4的复分解反应具有中等的激活势垒,分别为26.5(30.7),18.4(20.5)和28.3( 31.5)kcal / mol。从这些结果可以清楚地得出结论,Cp_2Zr催化的乙烯氢硅烷化的最有利的催化循环包括Cp_2Zr(C_2H_4)与SiH4的偶联反应,然后进行乙烯辅助的C-H还原消除。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2004年第10期|p. 3332-3348|共17页
  • 作者单位

    Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyou-ku, Kyoto 615-8510, Japan;

    Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;

    Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyou-ku, Kyoto 615-8510, Japan;

    Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号