首页> 外文期刊>Journal of the American Chemical Society >Where Does the Electron Go? Electron Distribution and Reactivity of Peptide Cation Radicals Formed by Electron Transfer in the Gas phase
【24h】

Where Does the Electron Go? Electron Distribution and Reactivity of Peptide Cation Radicals Formed by Electron Transfer in the Gas phase

机译:电子会去哪里?气相中电子转移形成的肽阳离子自由基的电子分布和反应性

获取原文
获取原文并翻译 | 示例
           

摘要

We report the first detailed analysis at correlated levels of ab initio theory of experimentally studied peptide cations undergoing charge reduction by collisional electron transfer and competitive dissociations by loss of H atoms, ammonia, and N-C_α bond cleavage in the gas phase. Doubly protonated Gly-Lys, (GK + 2H)~(2+), and Lys-Lys, (KK + 2H)~(2+), are each calculated to exist as two major conformers in the gas phase. Electron transfer to conformers with an extended lysine chain triggers highly exothermic dissociation by loss of ammonia from the Gly residue, which occurs from the ground (X) electronic state of the cation radical. Loss of Lys ammonium H atoms is predicted to occur from the first excited (A) state of the charge-reduced ions. The X and A states are nearly degenerate and show extensive delocalization of unpaired electron density over spatially remote groups. This delocalization indicates that the captured electron cannot be assigned to reduce a particular charged group in the peptide cation and that superposition of remote local Rydberg-like orbitals plays a critical role in affecting the cation-radical reactivity. Electron attachment to ion conformers with carboxyl-solvated Lys ammonium groups results in spontaneous isomerization by proton-coupled electron transfer to the carboxyl group forming dihydroxymethyl radical intermediates. This directs the peptide dissociation toward N-C_α bond cleavage that can proceed by multiple mechanisms involving reversible proton migrations in the reactants or ion-molecule complexes. The experimentally observed formations of Lys z~(+·) fragments from (GK + 2H)~(2+) and Lys C~+ fragments from (KK + 2H)~(2+) correlate with the product thermochemistry but are independent of charge distribution in the transition states for N-C_·α bond cleavage. This emphasizes the role of ion-molecule complexes in affecting the charge distribution between backbone fragments produced upon electron transfer or capture.
机译:我们报告了从头算理论的相关水平进行的首次详细分析,该理论是通过实验研究的肽阳离子通过碰撞电子转移进行电荷还原以及通过气相中H原子,氨气和N-C_α键断裂的损失而竞争性解离而进行的。计算出双质子化的Gly-Lys(GK + 2H)〜(2+)和Lys-Lys(KK + 2H)〜(2+)在气相中分别作为两个主要构象体存在。电子通过带有赖氨酸链延伸的构象异构体而转移,通过从Gly残基损失氨来触发高放热解离,这是从阳离子自由基的基态(X)发生的。预计Lys铵H原子的损失会从电荷还原离子的第一个激发态(A)发生。 X和A状态几乎是简并的,并且在空间遥远的组中显示出未成对电子密度的广泛离域。这种离域表明不能将捕获的电子分配给还原肽阳离子中的特定带电基团,并且远程局部Rydberg样轨道的叠加在影响阳离子自由基反应性方面起着关键作用。电子与带有羧基溶剂化的Lys铵基团的离子构象异构体的连接通过质子偶联的电子转移到形成二羟甲基自由基中间体的羧基而导致自发异构化。这将肽解离导向N-C_α键裂解,该裂解可以通过涉及反应物或离子-分子复合物中可逆质子迁移的多种机理进行。实验观察到的来自(GK + 2H)〜(2+)的Lys z〜(+·)片段的形成和来自(KK + 2H)〜(2+)的Lys C〜+片段的形成与产物热化学相关,但与N-C_·α键断裂的过渡态中的电荷分布。这强调了离子分子复合物在影响电子转移或捕获后产生的骨架片段之间的电荷分布中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号