首页> 外文学位 >Mechanisms of electron transfer and hydrogen activation in selected triruthenium clusters with multiple bridging ligands. Part I. The attenuation of radical reactivity in triruthenium trihydrido(alkylidyne) clusters. Electrochemistry and kinetics of decomposition of the 47-electron cluster radical, via a disproportionation path. Part II. The activation of molecular hydrogen at transition metal centers via kinetics and mechanism of reversible oxidative addition of hydrogen across the metal-metal bond of (mu-hydrogen)(2)Ruthenium(3)(Carbon monoxide)(8)(mu-phosphorus(t-BU)(2))(2).
【24h】

Mechanisms of electron transfer and hydrogen activation in selected triruthenium clusters with multiple bridging ligands. Part I. The attenuation of radical reactivity in triruthenium trihydrido(alkylidyne) clusters. Electrochemistry and kinetics of decomposition of the 47-electron cluster radical, via a disproportionation path. Part II. The activation of molecular hydrogen at transition metal centers via kinetics and mechanism of reversible oxidative addition of hydrogen across the metal-metal bond of (mu-hydrogen)(2)Ruthenium(3)(Carbon monoxide)(8)(mu-phosphorus(t-BU)(2))(2).

机译:具有多个桥联配体的选定三钌簇中电子转移和氢活化的机理。第一部分。三氢三钌(亚烷基)簇中自由基反应性的减弱。通过歧化路径分解47电子簇自由基的电化学和动力学。第二部分通过(mu-hydrogen)(2)钌(3)(一氧化碳)(8)(mu-phosphorus()的金属-金属键上氢的可逆氧化加成反应的动力学和机理激活过渡金属中心的分子氢t-BU)(2))(2)。

获取原文
获取原文并翻译 | 示例

摘要

Part I. The redox chemistry of the organometallic clusters H3Ru3(μ3-CX)(CO)9−nL n (X = OMe; L = PPh3; n = 0–3: X = OMe, SEt; L 2 = dppm; L = PPh3; n = 3: X = SEt, NMeBz; L = PR3, SbPh3; n = 2, 3) has been studied both chemically and electrochemically. The chemically oxidized 47-electron species have been characterized by EPR spectroscopy. Kinetic studies indicate that the radical cation clusters decompose by way of a disproportionation path. The clusters display electrochemical oxidation potentials which become more negative as the degree of ligand substitution increases and as the pi donor ability of the methylidyne substituent (CX) increases. For the series X = OMe, L = PPh3, n = 0–3, a dramatic shift in relative potentials of the first and second oxidations occurs. When n = 2 or 3, two sequential one-electron oxidations are observed, in which the first oxidation is essentially reversible, as the rate of disproportionation is too slow to be observed electrochemically. However, when n = 1 or 0 the oxidation potential of the second ET is, respectively, equivalent to, or easier than the first ET, allowing disproportionation of the 47-electron species to occur very rapidly. The driving force for disproportionation appears to be the follow-up reactivity of the dication species. That is, the second oxidation forms a dication product which appears to be chemically, but not electrochemically, reversible with the starting 48-electron cluster. It is speculated that a structural change is occurring within the 46-electron dication.;Part II. The kinetics of the reaction (μ-H) 2Ru3(CO)8(μ-P(t-Bu)2)2 + H2 &rlarr2; (μ-H)2Ru3(CO)8(H)2(μ-P(t-Bu) 2)2 have been studied. The reaction of (μ-H)2Ru 3(CO)8(μ-P(t-Bu)2)2 with H 2 has a rate law which is first-order in cluster concentration and in hydrogen pressure and inverse order in CO pressure. On the basis of the rate law, activation parameters, and deuterium kinetic isotope effect, hydrogen addition is proposed to involve rapid, reversible dissociation of a carbonyl ligand, followed by rate-determining oxidative addition of hydrogen through a three-center transition state at a single metal atom. Loss of hydrogen from (μ-H)2Ru3(CO)8(H)2(μ-P(t-Bu) 2)2 also involves reversible loss of a carbonyl, followed by rate-determining reductive elimination of molecular hydrogen. The reaction is highly sensitive to the steric bulk of the phosphido substituents, as (μ-H) 2Ru3(CO)8(μ-P(R)2)2, R = cyclohexyl and phenyl, do not react with hydrogen. In addition, the rate of exchange with 13CO is much faster for R = t-Bu than for R = cyclohexyl. Based upon the temperature dependence of the equilibrium constant for hydrogenation, the energy for the unbridged Ru-Ru bond of (μ-H) 2Ru3(CO)8(μ-P(t-Bu)2)2 is estimated to be 47–59 kJ/mol. The low value is attributed to steric stain.
机译:第一部分:有机金属簇H3Ru3(μ3-CX)(CO)9-nL n(X = OMe; L = PPh3; n = 0–3:X = OMe,SEt; L 2 = dppm; L = PPh3; n = 3:X = SEt,NMeBz; L = PR3,SbPh3; n = 2,3)已经在化学和电化学上进行了研究。化学氧化的47电子物种已经通过EPR光谱进行了表征。动力学研究表明,自由基阳离子簇通过歧化途径分解。簇显示出电化学氧化电势,其随着配体取代度的增加和亚甲基取代基(CX)的pi供体能力的增加而变得更负。对于系列X = OMe,L = PPh3,n = 0-3,第一次和第二次氧化的相对电势发生了剧烈变化。当n = 2或3时,观察到两个连续的单电子氧化,其中第一氧化基本上是可逆的,因为歧化速率太慢而不能用电化学观察到。但是,当n = 1或0时,第二个ET的氧化电位分别等于或比第一个ET容易,从而使47电子物种的歧化非常迅速地发生。歧化的驱动力似乎是药物种类的后续反应性。也就是说,第二次氧化形成了一种指示产物,该指示产物在化学上,但在电化学上似乎与起始的48电子簇不可逆。推测在46电子指示内发生了结构变化。反应动力学(μ-H)2Ru3(CO)8(μ-P(t-Bu)2)2 + H2&rlarr2;对(μ-H)2Ru3(CO)8(H)2(μ-P(t-Bu)2)2进行了研究。 (μ-H)2Ru 3(CO)8(μ-P(t-Bu)2)2与H 2的反应的速率定律在簇浓度和氢压中为一阶,而在CO中则为反阶压力。根据速率定律,活化参数和氘代动力学同位素效应,提出加氢涉及羰基配体的快速,可逆解离,然后通过氢的三中心过渡态速率确定氢的氧化加成。单金属原子。氢从(μ-H)2Ru3(CO)8(H)2(μ-P(t-Bu)2)2的损失还涉及羰基的可逆损失,然后确定分子氢的还原速率。由于对(μ-H)2Ru3(CO)8(μ-P(R)2)2(R =环己基和苯基)不与氢反应,因此该反应对磷酸取代基的空间空间高度敏感。此外,R = t-Bu与13CO的交换速率比R =环己基快得多。根据氢化平衡常数的温度依赖性,估计(μ-H)2Ru3(CO)8(μ-P(t-Bu)2)2的未桥接Ru-Ru键的能量为47– 59 kJ /摩尔。低值归因于空间染色。

著录项

  • 作者

    Bierdeman, David John.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号