首页> 外文期刊>Journal of the American Chemical Society >A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells
【24h】

A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells

机译:具有最高最高被占领分子轨道水平的宽带隙聚合物可在聚合物太阳能电池中实现14.2%的效率

获取原文
获取原文并翻译 | 示例
           

摘要

To simultaneously achieve low photon energy loss (E _(loss)) and broad spectral response, the molecular design of the wide band gap (WBG) donor polymer with a deep HOMO level is of critical importance in fullerene-free polymer solar cells (PSCs). Herein, we developed a new benzodithiophene unit, i.e., DTBDT-EF, and conducted systematic investigations on a WBG DTBDT-EF-based donor polymer, namely, PDTB-EF-T. Due to the synergistic electron-withdrawing effect of the fluorine atom and ester group, PDTB-EF-T exhibits a higher oxidation potential, i.e., a deeper HOMO level (ca. −5.5 eV) than most well-known donor polymers. Hence, a high open-circuit voltage of 0.90 V was obtained when paired with a fluorinated small molecule acceptor (IT-4F), corresponding to a low E _(loss) of 0.62 eV. Furthermore, side-chain engineering demonstrated that subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T. With the benefits of the stronger interchain π–π interaction, the improved ordering structure, and thus the highest hole mobility, the most symmetric charge transport and reduced recombination are achieved for the linear decyl-substituted PDTB-EF-T (P2)-based PSCs, leading to the highest short-circuit current density and fill factor (FF). Due to the high Flory–Huggins interaction parameter (χ), surface-directed phase separation occurs in the P2:IT-4F blend, which is supported by X-ray photoemission spectroscopy results and cross-sectional transmission electron microscope images. By taking advantage of the vertical phase distribution of the P2:IT-4F blend, a high power conversion efficiency (PCE) of 14.2% with an outstanding FF of 0.76 was recorded for inverted devices. These results demonstrate the great potential of the DTBDT-EF unit for future organic photovoltaic applications.
机译:为了同时实现低光子能量损失(E_(损失))和宽光谱响应,具有深HOMO含量的宽带隙(WBG)供体聚合物的分子设计在无富勒烯的聚合物太阳能中至关重要单元(PSC)。本文中,我们开发了一种新的苯并二噻吩单元,即DTBDT-EF,并对基于WBG DTBDT-EF的供体聚合物PDTB-EF-T进行了系统研究。由于氟原子和酯基团的协同吸电子作用,PDTB-EF-T表现出比大多数众所周知的供体聚合物更高的氧化电位,即更深的HOMO能级(约-5.5 eV)。因此,当与氟化的小分子受体(IT-4F)配对时,获得了0.90V的高开路电压,对应于0.62eV的低E _(损耗)。此外,侧链工程表明,酯的微妙侧链调节极大地影响了聚合物PDTB-EF-T的聚集效应和分子堆积。基于线性癸基取代的PDTB-EF-T(P2),由于链间π-π相互作用更强,有序结构得到改善,从而使空穴迁移率最高,从而实现了最对称的电荷传输和减少的重组PSC,导致最高的短路电流密度和填充因子(FF)。由于高的Flory-Huggins相互作用参数(χ),P2:IT-4F共混物中发生了表面定向相分离,这由X射线光电子能谱结果和截面透射电子显微镜图像支持。通过利用P2:IT-4F共混物的垂直相位分布,反相设备的高功率转换效率(PCE)为14.2%,出色的FF为0.76。这些结果证明了DTBDT-EF装置在未来有机光伏应用中的巨大潜力。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第23期|7159-7167|共9页
  • 作者单位

    State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China,University of Chinese Academy of Sciences, Beijing 100049, P. R. China;

    Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States;

    State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China,University of Chinese Academy of Sciences, Beijing 100049, P. R. China;

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States;

    State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China,University of Chinese Academy of Sciences, Beijing 100049, P. R. China;

    State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;

    State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China,University of Chinese Academy of Sciences, Beijing 100049, P. R. China;

    Department of Physics and Organic and Carbon Electronics Lab (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States;

    State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China,University of Chinese Academy of Sciences, Beijing 100049, P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号