首页> 外文期刊>Journal of the American Chemical Society >pH-Responsive Nanoparticle Superlattices with Tunable DNA Bonds
【24h】

pH-Responsive Nanoparticle Superlattices with Tunable DNA Bonds

机译:具有可调DNA键的pH响应纳米粒子超晶格

获取原文
获取原文并翻译 | 示例
           

摘要

Stimuli-responsive nanomaterials with reconfigurable structures and properties have garnered significant interest in the fields of optics, electronics, magnetics, and therapeutics. DNA is a powerful and versatile building material that provides programmable structural and dynamic properties, and indeed, sequence-dependent changes in DNA have already been exploited in creating switchable DNA-based architectures. However, rather than designing a new DNA input sequence for each intended dynamic change, it would be useful to have one simple, generalized stimulus design that could provide multiple different structural outputs. In pursuit of this goal, we have designed, synthesized, and characterized pH-dependent, switchable nanoparticle superlattices by utilizing i-motif DNA structures as pH-sensitive DNA bonds. When the pH of the solution containing such superlattices is changed, the superlattices reversibly undergo: (i) a lattice expansion or contraction, a consequence of the pH-induced change in DNA length, or (ii) a change in crystal symmetry, a consequence of both pH-induced DNA “bond breaking” and “bond forming” processes. The introduction of i-motifs in DNA colloidal crystal engineering marks a significant step toward being able to dynamically modulate crystalline architectures and propagate local molecular motion into global structural change via exogenous stimuli.
机译:具有可重构结构和性质的刺激响应性纳米材料在光学,电子学,磁性学和治疗学领域引起了极大的兴趣。 DNA是一种功能强大且用途广泛的建筑材料,可提供可编程的结构和动态特性,实际上,DNA中依赖序列的变化已被用于创建可切换的基于DNA的体系结构。但是,与其为每个预期的动态变化设计新的DNA输入序列,不如进行一个简单的,可提供多种不同结构输出的通用刺激设计,将很有用。为实现这一目标,我们通过利用i-基序DNA结构作为pH敏感的DNA键设​​计,合成和表征了pH依赖的可切换纳米粒子超晶格。当包含此类超晶格的溶液的pH发生变化时,这些超晶格可逆地经历:(i)pH诱导的DNA长度变化的结果是晶格膨胀或收缩,或者(ii)结果的晶体对称性变化。 pH诱导的DNA的“键断裂”和“键形成”过程。在DNA胶体晶体工程中引入i-基序标志着朝着能够动态调节晶体结构,并通过外源性刺激将局部分子运动传播为整体结构变化迈出的重要一步。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第15期|5061-5064|共4页
  • 作者单位

    Department of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States;

    Department of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号