首页> 外文期刊>Journal of Scientific Computing >On Multilevel Picard Numerical Approximations for High-Dimensional Nonlinear Parabolic Partial Differential Equations and High-Dimensional Nonlinear Backward Stochastic Differential Equations
【24h】

On Multilevel Picard Numerical Approximations for High-Dimensional Nonlinear Parabolic Partial Differential Equations and High-Dimensional Nonlinear Backward Stochastic Differential Equations

机译:高维非线性抛物型偏微分方程和高维非线性倒向随机微分方程的多级皮卡德数值逼近

获取原文
获取原文并翻译 | 示例
           

摘要

Parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) are key ingredients in a number of models in physics and financial engineering. In particular, parabolic PDEs and BSDEs are fundamental tools in pricing and hedging models for financial derivatives. The PDEs and BSDEs appearing in such applications are often high-dimensional and nonlinear. Since explicit solutions of such PDEs and BSDEs are typically not available, it is a very active topic of research to solve such PDEs and BSDEs approximately. In the recent article (E et al., Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, arXiv:1607.03295) we proposed a family of approximation methods based on Picard approximations and multilevel Monte Carlo methods and showed under suitable regularity assumptions on the exact solution of a semilinear heat equation that the computational complexity is bounded by O(d mml:mspace width=0.166667em mml:mspace epsilon-(4+)) for any (0,) where d is the dimensionality of the problem and epsilon(0,) is the prescribed accuracy. In this paper, we test the applicability of this algorithm on a variety of 100-dimensional nonlinear PDEs that arise in physics and finance by means of numerical simulations presenting approximation accuracy against runtime. The simulation results for many of these 100-dimensional example PDEs are very satisfactory in terms of both accuracy and speed. Moreover, we also provide a review of other approximation methods for nonlinear PDEs and BSDEs from the scientific literature.
机译:抛物线偏微分方程(PDE)和后向随机微分方程(BSDE)是物理和金融工程中许多模型的关键要素。特别地,抛物线型PDE和BSDE是金融衍生产品定价和对冲模型的基本工具。在此类应用中出现的PDE和BSDE通常是高维的和非线性的。由于通常没有这样的PDE和BSDE的显式解决方案,因此大约解决这类PDE和BSDE是一个非常活跃的研究主题。在最近的文章(E等人,用于求解光滑半线性抛物线热方程的多级Picard迭代,arXiv:1607.03295)中,我们提出了一系列基于Picard逼近和多级蒙特卡洛方法的逼近方法,并在适当的正则性假设下给出了精确值。对于任何(0,),计算复杂度受O(d mml:mspace宽度= 0.166667em mml:mspace epsilon-(4+))约束的半线性热方程的解,其中d是问题的维数,epsilon( 0,)是规定的精度。在本文中,我们通过对运行时间进行近似计算的数值模拟,测试了该算法在物理和金融领域出现的各种100维非线性PDE上的适用性。这些100维示例PDE的许多仿真结果在准确性和速度方面都非常令人满意。此外,我们还从科学文献中综述了非线性PDE和BSDE的其他近似方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号