首页> 外文期刊>Journal of propulsion and power >Nanosecond Pulsed Plasma Activated C2H4/O2/Ar Mixtures in a Flow Reactor
【24h】

Nanosecond Pulsed Plasma Activated C2H4/O2/Ar Mixtures in a Flow Reactor

机译:流反应器中的纳秒脉冲等离子体活化的C2H4 / O2 / Ar混合物

获取原文
获取原文并翻译 | 示例
           

摘要

The present work combines numerical and experimental efforts to investigate the effect of nanosecond pulsed plasma discharges on the low-temperature oxidation of C_2H_4/O_2/Ar mixtures under reduced pressure conditions. The nonequilibrium plasma discharge is modeled using a one-dimensional framework, employing separate electron and neutral gas temperatures, and using a detailed plasma and combustion chemical kinetic mechanism. Good agreement is seen between the numerical and experimental results, and both results show that plasma enables low-temperature C_2H_4 oxidation. Compared to zero-dimensional modeling, the one-dimensional modeling significantly improves predictions, probably because it produces a more complete physical description (including sheath formation and accurate reduced electric field). Furthermore, the one- and zero-dimensional models show very different reaction pathways, using the same chemical kinetic mechanism and thus suggest different interpretations of the experimental results. Two kinetic mechanisms (HP-Mech and USC Mech-Ⅱ) are examined in this study. The modeling results from HP-Mech agree better with the experimental results than those of USC Mech-Ⅱ because USC Mech-Ⅱ does not include the OH + C_2H_4 = CH_2CH_2OH reaction pathway. The model shows that 75-77% of the input pulse energy is consumed during the breakdown process in electron impact dissociation, excitation, and ionization reactions, which efficiently produce reactive radical species, fuel fragments, and excited species. The modeling results using HP-Mech reveal that reactions between O(~1D) and C_2H_4 generate 24% of OH, 19% of HCO, 60% of CH_3,63% of CH_2, and 17% of CH_2O. These in turn significantly enhance hydrocarbon oxidation, since 83% of CO comes from HCO and 53% of CO_2 comes from CH_2 under the present low-temperature environment and short time scale.
机译:本工作结合数值和实验努力来研究纳秒脉冲等离子体放电对减压条件下C_2H_4 / O_2 / Ar混合物的低温氧化的影响。非平衡等离子体放电是使用一维框架,采用单独的电子和中性气体温度以及详细的等离子体和燃烧化学动力学机制进行建模的。数值结果与实验结果吻合良好,两个结果均表明等离子体可实现低温C_2H_4氧化。与零维建模相比,一维建模可以显着改善预测效果,这可能是因为它产生了更完整的物理描述(包括护套形成和精确减小的电场)。此外,一维和零维模型使用相同的化学动力学机理显示出非常不同的反应途径,因此对实验结果提出了不同的解释。本研究考察了两种动力学机制(HP-Mech和USCMech-Ⅱ)。 HP-Mech的建模结果与USCMech-Ⅱ的实验结果吻合较好,因为USCMech-Ⅱ不包括OH + C_2H_4 = CH_2CH_2OH反应路径。该模型表明,在击穿过程中,电子撞击离解,激发和电离反应会消耗75-77%的输入脉冲能量,从而有效地产生反应性自由基物种,燃料碎片和激发物种。使用HP-Mech进行建模的结果表明,O(〜1D)与C_2H_4之间的反应生成24%的OH,19%的HCO,60%的CH_3、63%的CH_2和17%的CH_2O。在目前的低温环境和短时间规模内,由于83%的CO来自HCO,53%的CO_2来自CH_2,这些反过来大大增强了烃的氧化。

著录项

  • 来源
    《Journal of propulsion and power》 |2016年第5期|1240-1252|共13页
  • 作者单位

    Georgia Institute of Technology, Atlanta, Georgia 30332;

    Georgia Institute of Technology, Atlanta, Georgia 30332;

    Georgia Institute of Technology, Atlanta, Georgia 30332;

    Georgia Institute of Technology, Atlanta, Georgia 30332;

    General Electric Global Research, Schenectady, New York 12301;

    Princeton University, Princeton, New Jersey 08544;

    Princeton University, Princeton, New Jersey 08544;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号