...
首页> 外文期刊>Journal of power sources >Microscale X-ray tomographic investigation of the interfacial morphology between the catalyst and micro porous layers in proton exchange membrane fuel cells
【24h】

Microscale X-ray tomographic investigation of the interfacial morphology between the catalyst and micro porous layers in proton exchange membrane fuel cells

机译:质子交换膜燃料电池中催化剂与微孔层之间界面形态的微观X射线断层扫描研究

获取原文
获取原文并翻译 | 示例
           

摘要

The interfacial morphology between the catalyst layer (CL) and micro porous layer (MPL) influences the performance of proton exchange membrane fuel cells (PEMFCs). Here we report a direct method to investigate the CL-MPL interfacial morphology of stacked and compressed gas diffusion layer (GDL with MPL)-catalyst coated membrane (CCM) assemblies. The area, origin and dimensions of interfacial gaps are studied with high-resolution X-ray micro computed tomography (X-ACT). The projected gap area (fraction of the CL-MPL interface separated by gaps) is higher for GDL-CCM assemblies with large differences in the surface roughness between CL and MPL but reduces with increasing compression and similarity in roughness. Relatively large continuous gaps are found in proximity to cracks in the MPL. These are hypothesized to form due to the presence of large pores on the surface of the GDL. Smaller gaps are induced by the surface roughness features throughout the CL-MPL interface. By modification of the pore sizes on the GDL surface serving as substrate for the MPL, the number and dimension of MPL crack induced gaps can be manipulated. Moreover, adjusting the CL and MPL surface roughness parameters to achieve similar orders of roughness can improve the surface mating characteristics of these two components. (C) 2016 Elsevier B.V. All rights reserved.
机译:催化剂层(CL)和微孔层(MPL)之间的界面形态会影响质子交换膜燃料电池(PEMFC)的性能。在这里,我们报告一种直接的方法来研究堆积和压缩气体扩散层(带有MPL的GDL)-催化剂涂层膜(CCM)组件的CL-MPL界面形态。用高分辨率X射线微计算机断层扫描(X-ACT)研究界面间隙的面积,来源和尺寸。对于CL和MPL之间的表面粗糙度差异较大的GDL-CCM组件,预计的间隙面积(由间隙分隔的CL-MPL界面的分数)较高,但随着压缩和粗糙度相似性的降低而减小。在MPL的裂纹附近发现了相对较大的连续间隙。假设这些是由于GDL表面上存在大孔而形成的。整个CL-MPL界面的表面粗糙度会引起较小的间隙。通过改变用作MPL基材的GDL表面上的孔径,可以控制MPL裂纹引起的缝隙的数量和尺寸。此外,调整CL和MPL表面粗糙度参数以达到相似的粗糙度级别可以改善这两个组件的表面配合特性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Journal of power sources》 |2016年第1期|82-89|共8页
  • 作者单位

    Univ British Columbia, Clean Energy Res Ctr, 6250 Appl Sci Lane, Vancouver, BC V6T 1Z4, Canada;

    Univ British Columbia, Sch Engn, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada;

    Univ British Columbia, Clean Energy Res Ctr, 6250 Appl Sci Lane, Vancouver, BC V6T 1Z4, Canada;

    Univ British Columbia, Sch Engn, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada|McMaster Univ, Dept Mat Sci & Engn, 1280 Main St West, Hamilton, ON L8S 4L7, Canada;

    Univ British Columbia, Clean Energy Res Ctr, 6250 Appl Sci Lane, Vancouver, BC V6T 1Z4, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PEM fuel cell; Catalyst layer; Micro porous layer; Interfacial gaps; Visualization; Compression;

    机译:PEM燃料电池;催化剂层;微孔层;界面间隙;可视化;压缩;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号